International J. of Engg. Research & Indu. Appls. (IJERIA). ISSN 0974-1518, Vol.2, No.I (2009), pp 11-22

COMPUTATIONAL ANALYSIS OF NATURAL CONVECTION WITH SINGLE 60⁰ V FIN

R. L. EDLABADKAR, S. S. SANE, A. A. KULKARNI, N. K. SANE AND G. V. PARISHWAD

Abstract

Because of lateral interactions of the augmented boundary layers in the downstream region, the vertical fins are inapplicable in the heat transfer enhancement. Misumi and Kitamura [3] have reported an experimental work on enhancement of natural convection heat transfer from vertical base plate with a horizontal partition plate and V plates in water as ambience. This heat transfer enhancing technique was further investigated experimentally, in air as ambience by Parishwad et al. [4]. The numerical analysis of this technique is done for 60° V fin using Computational Fluid Dynamics (CFD) software, FLUENT, for natural convection adjacent to a vertical heated plate and fin assembly in ambient air surrounding. Validation of numerical results is done with the experimental results. As compared to conventional vertical fin, this V-type fin works not only as extended surface but also as Flow separators. This V-type fin is compact and hence highly economical. The computational analysis done so far confirms the experimental analysis done earlier well within the 5% variation and concurs that 60° V-fin performs better than vertical fin and horizontal fin of the equal dimensions.

Keywords: Natural convection heat transfer, fins, boundary layer, computational fluid dynamics **Subject Classification**: Mechanical Engineering – Heat transfer
