International J. of Engg. Research & Indu. Appls. (IJERIA). ISSN 0974-1518, Vol. 3, No. III (August 2010), pp. 93-106

BIFURCATION AND LYAPUNOV EXPONENT OF A CHAOTIC CUBIC MAP

HEMANTA KR. SARMAH, RUMA SAHA AND NILIMA DUTTA

Abstract

In recent years, increasing research activity in the field of nonlinear systems has shown that even simple dynamical models can produce complex, seemingly random-looking behaviour, including the appearance of chaos. The universality discovered by M.J.Feigenbaum [1], [2] with non-linear models has successfully led to observe that large classes of non-linear systems exhibit transitions to chaos through period doubling route. In this paper, we have considered a one parameter cubic map, obtained the fixed points / periodic points and bifurcation values of periods 2^n , n = 0, 1, 2, ... using suitable numerical methods and have shown how the ratio of three successive period doubling bifurcation points ultimately converge to the Feigenbaum constant. We have calculated the Feigenbaum α value [4] also. We have further verified our findings with the help of Time series analysis, Lyapunov exponent [6], [9] and the Bifurcation diagram of the cubic map.

© Ascent Publication House: http://www.ascent-journals.com

Keywords: Period Doubling bifurcation / Chaos / Feigenbaum constant / Feigenbaum α value Lyapunov exponent