International J. of Multidispl. Research & Advcs. in Engg. (IJMRAE), ISSN 0975-7074, Vol. 8 No. II (August, 2016), pp. 1-6

SOME REMARKS ON HOMOMORPHISMS OF LIE IDEALS IN PRIME RINGS WITH INVOLUTIONS

NADEEM UR REHMAN¹, REKHA RANI² AND ABAJI GOTMARE³

¹ Department of Mathematics,
Aligarh Muslim University Aligarh-202001, India E-mail: rehman100@gmail.com
² Department of Mathematics,
N. R. E. C. College Khurja-203131, India E-mail: rekharani@rediffmail.com
³ Department of Mathematics,
Science College, Jamner (MH), India

Abstract

Let R be a *-prime ring of char $R \neq 2$ and L be a square closed *-Lie ideal of R. Suppose that R admits a generalized left *-derivation $F : R \to R$. If F acts as a homomorphism on L, then F is right *-centralizer on R.

1. Introduction

Throughout this paper, R will denote an associative ring (may be without unity 1, unless specifically thier use) with center Z(R). The ring R is *n*-torsion free for any prime integer where n > 1 is an integer, if nx = 0, $x \in R$ implies x = 0. As usual the

Key Words and Phrases : Generalized left *-derivations, Jordan *-centralizer, Prime rings, Lie ideals.

2000 AMS Subject Classification : 16N60, 16W25, 16W10, 16U80.

© http://www.ascent-journals.com

commutator xy - yx will be denoted by [x, y]. We shall frequently use the commutator identities [xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z for all $x, y, z \in R$. Recall that a ring R is prime if for any $a, b \in R$, $aRb = \{0\}$ implies that either a = 0 or b = 0. An additive mapping $x \mapsto x^*$ on a ring R is called an involution on R if $(xy)^* = y^*x^*$ and $(x^*)^* = x$ hold for all $x, y \in R$. A ring equipped with an involution is called a ring with an involution or *-ring. A ring with an involution '*' is said to be a *-prime ring if $aRb = aRb^* = \{0\}$ (or $aRb = a^*Rb = \{0\}$) implies either a = 0 or b = 0. It is obvious that every prime ring with an involution '*' is a *-prime ring but the converse may not be necessarily true in general. An additive subgroup L of R is said to be Lie ideal of Rif $[L, R] \subseteq L$. A Lie ideal L is said to be square closed if $u^2 \in L$ for all $u \in L$ and L is said to be *-Lie ideal if $L = L^*$.

An additive mapping δ is called derivation (resp. Jordan derivation) if $\delta(xy) = \delta(x)y + x\delta(y)$ (resp. $\delta(x^2) = \delta(x)x + x\delta(x)$) holds for all $x, y \in R$. An additive mapping $f: R \to R$ is called generalized derivation if there exists a derivation $\delta: R \to R$ such that $f(xy) = f(x)y + x\delta(y)$ holds for all $x, y \in R$. An additive mapping $d: R \to R$ is said to be left derivation (resp. Jordan left derivation) if d(xy) = xd(y) + yd(x) (resp. $d(x^2) = 2xd(x)$) holds for all $x, y \in R$. Clearly, every left derivation on a ring R is a Jordan left derivation but the converse need not be true in general (see for example [16, Example 1.1]). In [2], Ashraf and first author showed that if R is a 2-torsion free prime ring and $d: R \to R$ is an additive mapping such that $d(u^2) = 2ud(u)$ for all u in a square closed Lie ideal L of R, then d(uv) = ud(v) + vd(u) for all $u, v \in L$.

Let S be a nonempty subset of R and $\delta: R \to R$ be a derivation of R. If $\delta(xy) = \delta(x)\delta(y)$ (resp. $\delta(xy) = \delta(y)\delta(x)$) for all $x, y \in S$, then δ is said to acts as homomorphism (resp. anti-homomorphism) on S. In [3], Bell and Kappe proved that if I is a nonzero right ideal of a prime ring R and δ is a derivation of R such that δ acts as homomorphism (resp. anti-homomorphism) on I, then $\delta = 0$. Further, this result was extended by Rehman [10] for generalized derivation. Similar types of results have been proved for generalized left derivation by Rehman and Ansari in [14]. A mapping $B: R \times R \to R$ is said to be symmetric if B(x, y) = B(y, x) for all $x, y \in R$. Following [5], a bi-additive map $B: S \times S \to R$ is called bi-derivation on S if it is a derivation in each argument, the map $y \mapsto B(x, y)$ is a derivation S into R. Typical examples are mappings of the form $(x, y) \mapsto \lambda[x, y]$, where λ is an element of the center of R. The concept of bi-derivation was introduced by Maska [8]. Further, Bresar [5] showed that every bi-derivation B of a non-commutative prime ring R is of the form $B(x, y) = \lambda[x, y]$ for some $\lambda \in C$, the extended centroid of R.

2. Generalized Left *-derivation

Motivated by the definitions of *-derivation and generalized *-derivation, Rehman and Ansari [14] recently introduced the notions of left *-derivation and generalized left *derivation as follows: Let R be a *-ring. An additive mapping $d: R \to R$ is said to be left *-derivation if $d(xy) = x^*d(y) + yd(x)$ for all $x, y \in R$. An additive mapping $F: R \to R$ is said to be generalized left *-derivation if there exists a left *-derivation d such that $F(xy) = x^*F(y) + yd(x)$ for all $x, y \in R$. The concept of generalized left *-derivations cover the concept of left *-derivations. Moreover, a generalized left *-derivation with d = 0 includes the concept of right *-centralizer i.e., an additive mapping $T: R \to R$ satisfying $T(xy) = x^*T(y)$ for all $x, y \in R$. In [3], Bell and Kappe discussed the derivations acting as a homomorphisms or an anti-homomorphisms on a nonzero right ideal of a prime ring. Recently, Shakir [1], proved some results taking generalized left derivation of a prime ring R which acts either as homomorphisms or as an anti-homomorphisms on a certain well behaved subset of R. Further, this result was extended by Rehman and Ansari in [14] in the setting of generalized left *-derivation and generalized left *-bi-derivation. In the present section our objective is to extend the results obtained in [15], for Lie ideals.

More precisely, we prove the following:

Theorem 2.1 : Let R be a *-prime ring of charR $R \neq 2$ and $L \not\subseteq Z(R)$ is a square closed *-Lie ideal of R with involution '*'. Suppose that $F : R \to R$ is a generalized left *- derivation with associated left *-derivation on R. If F acts as a homomorphisms on L, then F is right *-centralizer on R.

In order to prove the main result of this section we will make use of the following Lemmas:

Lemma 2.1 ([4, Lemma 4]): Let R be a *-prime ring of characteristic different from two, L be a nonzero *-Lie ideal of R and $a, b \in L$. If $aLb^* = \{0\}$ then a = 0 or b = 0 or $L \subseteq Z(R)$.

Lemma 2.2 ([7, Lemma 3.3]) : Let R be a *-prime ring of characteristic different

from two, L be a nonzero *-Lie ideal of R. If $a \in R$ such that $[a, L] \subseteq Z(R)$, then either $a \in Z(R)$ or $L \subseteq Z(R)$.

The following Lemma is immediate consequence of Lemma 2.2.

Lemma 2.3 : Let R be a *-prime ring of characteristic different from two, L be a nonzero *-Lie ideal of R. Suppose $[L, L] \subseteq Z(R)$, then $L \subseteq Z(R)$.

Now, we are in a position to prove our main result of this section:

Proof of Theorem 2.1: If F acts as a homomorphisms on L, then F(xy) = F(x)F(y)for all $x, y \in L$ and also from the definition of generalized left *-derivation, we have $F(xy) = x^*F(y) + yd(x)$ for all $x, y \in R$, where d is a left *-derivation of R. Now

$$F(xyz) = F(x(yz)) = x^*F(yz) + yzd(x)$$

= $x^*F(y)F(z) + yzd(x)$ for all $x, y, z \in L$. (2.1)

On the other hand

$$F(xyz) = F((xy)z) = F(xy)F(z)$$

= $x^*F(y)F(z) + yd(x)F(z)$ for all $x, y, z \in L$. (2.2)

Combining (2.1) and (2.2), we obtain $x^*F(y)F(z) + yzd(x) = x^*F(y)F(z) + yd(x)F(z)$, for all $x, y, z \in L$. This yields that y(zd(x) - d(x)F(z)) = 0 for all $x, y, z \in L$. Multiplying left side by zd(x) - d(x)F(z) to the above relation, we obtain (zd(x) - d(x)F(z))y(zd(x) - d(x)F(z)) = 0 for all $x, y, z \in L$. Then by Lemma 2.1, we obtain

$$zd(x) - d(x)F(z) = 0 \quad \text{for all} \quad x, z \in L.$$

$$(2.3)$$

Replacing x by 2xy and using the fact that char $R \neq 2$ in the above relation, we get

$$zx^*d(y) + zyd(x) - x^*d(y)F(z) - yd(x)F(z) = 0 \text{ for all } x, y, z \in L.$$

Using relation (2.3) in the above relation, we find that

$$zx^*d(y) + zyd(x) - x^*zd(y) - yzd(x) = 0$$
 for all $x, y, z \in L$.

This yields that

$$[z, x^*]d(y) + [z, y]d(x) = 0$$
 for all $x, y, z \in L$.

In particular, replacing y by z in the above relation, we find that

$$[z, x^*]d(z) = 0$$
 for all $x, z \in L$.

Again, replace x by x^* in the above expression, to obtain

$$[x, z]d(z) = 0$$
 for all $x, z \in L.$ (2.4)

Replacing x by 2xy and using the fact that char $R \neq 2$, we get [x, z]yd(z) = 0 for all $x, y, z \in L$. Now, multiplying left side by d(z) and right side by [x, z], and by Lemma 2.1, we get d(z)[x, z] = 0 for all $x, z \in L$. Then, replacing z by y and linearizing the above relation, we obtain d(x)[z, y] + d(z)[x, y] = 0 for all $x, y, z \in L$, and hence

$$d(x)[z, y] = -d(z)[x, y] \text{ for all } x, y, z \in L.$$
(2.5)

Replacing y by 2uy in (2.4) and again using (2.4), we get 2d(x)u[x, y] = 0 for all $x, y, u \in L$. Since char $R \neq 2$, we find that d(x)u[x, y] = 0. Now, replace u by 2[z, y]r and use the fact that char $R \neq 2$, to get d(x)[z, y]r[x, y] = 0 for all $x, y, z \in L$ and $r \in R$ and hence application of (2.5), we obtain d(z)[x, y]r[x, y] = 0 for all $x, y, z \in L$ and $r \in R$. Again replacing r by rd(z) in the above expression, we get d(z)[x, y]rd(z)[x, y] = 0 for all $x, y, z \in L$ and $r \in R$, that is, $d(z)[x, y]Rd(z)[x, y] = \{0\}$ for all $x, y, z \in L$. Thus primeness of R forces that d(z)[x, y] = 0 for all $x, y, z \in L$. Again, replacing x by 2tx and using the fact that char $R \neq 2$, we get d(z)t[x, y] = 0 for all $x, y, z, t \in L$. Again by Lemma 2.1, we get d(z) = 0 for all $z \in L$. Replacing z by 2r[y, z] and using char $R \neq 2$, we get [y, z]d(r) = 0 for all $y, z \in L$ and $r \in R$. Therefore, by Lemma 2.1, we get d = 0 on R. Therefore, $F(xy) = x^*F(y)$ for all $x, y \in R$. Hence, we get the required result. We immediately get the following corollary from the above theorem:

Corollary 2.1: Let R be a *-prime ring of char $R \neq 2$ with involution '*'. Suppose that $d: R \to R$ is a left *-derivation on R. If d acts as a homomorphisms on R, then d is right *-centralizer on R.

References

- Ali S., On generalized left derivations in rings and Banach algebras, Aequ. Math., 81 (2011), 209-226.
- [2] Ashraf M. and Rehman N., On Lie ideals and Jordan left derivations of prime rings, Arch. Math. (Brno), 36 (2000), 201-206.

- [3] Bell H. E. and Kappe L. E., Ring in which derivations satisfying certain algebraic conditions, Acta Math. Hungar., 53 (1989), 339-340.
- [4] Bergen J., Herstein I. N., Kerr J. W., Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
- [5] Bresar M., Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218-228.
- [6] Herstein I. N., Topics in Ring Theory, University of Chicago Press, Chicago, London, (1969).
- [7] Herstein I. N., A note on derivations, Canad. Math. Bull., 21 (1978), 369-370.
- [8] Gy. Maska, Remark on symmetric biadditive functions having non-negative diagonalization, Glasnik Matematicki, 15 (1980), 279-280.
- [9] Muthana N. M., Left centralizer traces, generalized biderivations, left bi-multipliers and generalized Jordan biderivations, Aligarh Bull. Math., 26(2) (2007), 33-45.
- [10] Rehman N., On generalized derivation as homomorphisms and anti-homomorphisms, Glasnic Mat., 39(59) (2004), 27-30.
- [11] Rehman N. and Ansari A. Z., Additive mappings of semiprime rings, The Aligarh Bulletin of Mathematics, 30(1-2) (2011), 1-7.
- [12] Rehman N. and Ansari A. Z., On Lie ideals and generalized Jordan left derivations of prime rings, Ukrainian J. Mathematics, 65(8) (2013), 1118-1125.
- [13] Rehman N., Ansari A. Z. and Heitenger C., A note on homomorphism in rings with involution, Thai J. Mathematics, 11(3) (2013), 741-750.
- [14] Rehman N. and Ansari A. Z., Generalized left derivations acting as homomorphisms and anti-homomorphisms on Lie ideal of rings, accepted for publication in Journal of Egyptian Math. Society.
- [15] Rehman N., Hongan M., Generalized Jordan derivations on Lie ideals associate wit Hochschild 2- cocycles of rings, Rend. circ. Mat. Pallermo. Pol., (2) 60(3) (2011), 437-444.
- [16] Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. carolin., 32(4) (1991), 609-614.