International J. of Multidispl. Research & Advcs. in Engg.(IJMRAE) ISSN 0975-7074, Vol. 9, No. I (April 2017), pp. 15-20

SPACES FOR HANKEL TYPE TRANSFORMATION

T. G. THANGE

Department of Mathematics, Yogeshweri Mahavidalaya Ambajogai, India

Abstract

In this paper we have defined different spaces for the Hankel type transformation [1] defined by,

$$(\mathcal{H}_{\lambda}\phi)(y) = \int_0^\infty \left(\frac{y}{x}\right)^{\lambda/2} J_{\lambda}(2\sqrt{xy})\phi(x)dx$$

where J_{λ} denotes the Bessel function of the first kind and of order λ .

1. Introduction

The Hankel type transformation defined by

$$(\mathcal{H}_{\lambda}\phi)(y) = \int_0^\infty \left(\frac{y}{x}\right)^{\lambda/2} J_{\lambda}(2\sqrt{xy})\phi(x)dx \tag{1}$$

where, J_{λ} denotes the Bessel function of the first kind and order λ was studied on distribution spaced, $\mathcal{H}'_{a,\lambda}$ by M. S. Chaudhary [1].

Key Words : *Hankel type transform, Hankel translation and convolution.* AMS Subject Classification : 44A15; 46F12.

© http://www.ascent-journals.com

Given $\lambda \in \Box$, a > 0 this author introduced the space $\mathcal{H}_{a,\lambda}$ of all infinitely differentiable functions $\phi = \phi(x), x \in (0, \infty)$, k-non-negative integer, such that

$$\gamma_k^\lambda(\phi) = \gamma_k^{\lambda,a}(\phi) = \sup |e^{-ax} \Delta_{\lambda,x}^k \phi(x)| < \infty$$

where

$$\Delta_{\lambda,x}^k = [Dx^{-\lambda+1}Dx^{\lambda}]^k; \quad D = \frac{d}{dx}$$

topology is generated by the family of Seminorms $\{\gamma_k^{\lambda,a}\}, \mathcal{H}_{a,\lambda}$ becomes a frechet space. $\mathcal{H}'_{a,\lambda}$ - is the the dual space of $\mathcal{H}_{a,\lambda}$.

2. The Space \mathcal{H}^p_{λ}

We introduce a space $\mathcal{H}^p_{\lambda}, p \in \Box$ of all those $\phi \in L^2(I)$ such that the distributions $h_{\lambda,j}\phi(0 \leq j \leq p)$ are regular and satisfy

$$\|\phi\|_{\lambda,p} = \left\{\sum_{i+j=0}^{p} \int_{0}^{\infty} |x^{i}h_{\lambda,j}\phi(x)|^{2} dx\right\}^{1/2} < \infty$$

where $h_{\lambda,0}$ is the identity operator and $h_{\lambda,j}$ denotes the operator $N_{\lambda+j-1\cdots N_{\lambda}}$ $(j \in \Box, j \ge 1)$, with $x^{\lambda+1}Dx^{-\lambda+1}$.

Now let's denote $\mathcal{H}_{\lambda}^{-p}$ as dual space of $\mathcal{H}_{\lambda}^{p}$. For $\phi, \psi \in \mathcal{H}_{\lambda}^{p}$. We define inner product as,

$$[\phi,\psi]_{\lambda,p} = \sum_{1+j=0}^{p} \int_{0}^{\infty} x^{zi} h_{\lambda,j} \phi(x) h_{\lambda,j} \overline{\psi}(x) dx, \ (\phi,\psi \in \mathcal{H}_{\lambda}^{p})$$

Under this norm $\mathcal{H}_{\lambda}^{-p}$ and $\mathcal{H}_{\lambda}^{p}$ both are Hilbert spaces.

Now we will discuss about multipliers and Hankel convolution operators of the spaces \mathcal{H}^p_{λ} .

3. The Space of Multipliers $\beta_{p,q}$

In this section we introduce the space $\beta_{p,q}, p, q \in \Box$ of multipliers from \mathcal{H}^p_{λ} into \mathcal{H}^q_{λ} , i.e. of all those functions $\theta : I \to \Box$ such that $\theta \phi \in \mathcal{H}^q_{\lambda}$ for each $\phi \in \mathcal{H}^p_{\lambda}$ and the mapping $\phi \to \theta \phi$ is continuous.

Clearly $\beta_{p,q}$ acts as a space of multiplier form $\mathcal{H}_{\lambda}^{-q}$ into $\mathcal{H}_{\lambda}^{-p}$ by transposition.

Now we define the norm

$$\|\theta\|_{p,q} = \sup\{\|\theta\phi\|_{\lambda,y} : \phi \in \mathcal{H}^p_{|}la, \|\phi\|_{\lambda,p} \le 1\}, (\theta \in \beta_{p,q})\}$$

under this norm $\beta_{p,q}$ is Banach [2]. With the help of [2] we can give following alternate description about $\beta_{p,q}$.

Proposition 3.1: Let $p, q \in \Box, \theta : I \to C$. Then $\theta \in \beta_{p,q}$ iff $\theta \phi \in \mathcal{H}^q_{\lambda}$ for each $\phi \in \mathcal{H}_{a,\lambda}$ and $\|\theta \phi\|_{\lambda,q} \leq C \|\phi\|_{\lambda,p} (\phi \in \mathcal{H}_{a,\lambda})$.

Now let $p, q \in \Box$ then $x^{-\lambda+1}\beta_{p,q}$ is a subspace of $H'_{a,\lambda}$. See lemma 2.2 [2].

Lemma 3.1: Let $p, q \in N$ and $\phi \in \mathcal{H}'_{a,\lambda}$ then $T \in x^{-\lambda+1}\beta_{p,q}$ iff $x^{-\lambda+1}\phi(x)T(x) \in \mathcal{H}^q_{\lambda}$ for each $\phi \in \mathcal{H}_{a,\lambda}$ with

$$\|x^{-\lambda+1}\phi(x)T(x)\|_{\lambda,q} \le C \|\phi\|_{\lambda,p} \quad (\phi \in \mathcal{H}_{a,\lambda}).$$

$$\tag{2}$$

4. Multiplication Distribution Space $\mathcal{MD}(\mathcal{H}^p_{\lambda}, \mathcal{H}^q_{\lambda})$

Now let's introduce the space called multiplication distribution space from $\mathcal{H}^{l}_{\lambda}$ into $\mathcal{H}^{q}_{\lambda}$ for $p, q \in N$ as

$$\mathcal{MD}(\mathcal{H}_{|}^{p}la,\mathcal{H}_{\lambda}^{q}) = \{F \in \mathcal{H}_{a,\lambda}^{\prime} | \exists K_{F} \in L(\mathcal{H}_{\lambda}^{p},\mathcal{H}_{\lambda}^{q})$$

with

$$x^{-\lambda+1}\phi(x)F(x) = (L_{F\phi})(x)(\phi \in \mathcal{H}_{a,\lambda})$$

the space of multiplication distributions from \mathcal{H}^p_{λ} into \mathcal{H}^q_{λ} where $L(\mathcal{H}^p_{\lambda}, \mathcal{H}^q_{\lambda})$ denotes the space of all continuous linear mappings from \mathcal{H}^p_{λ} into \mathcal{H}^q_{λ} .

With the help of Lemma 2.1 we can give the relation between two spaces defined above as,

Theorem 4.1 : For each $p, q \in N$ the identity $\mathcal{MD}(\mathcal{H}^p_{\lambda}, \mathcal{H}^q_{\lambda}) = x^{-\lambda+1}\beta_{p,q}$ holds.

5. The Hankel Translation and Convolution Operator on \mathcal{H}^p_{λ}

In this section we define Hankel Translation and Convolution Operator on $\mathcal{H}^p_{|}\lambda$ for this we require the following theorem whose proof is similar to proof of [2].

Theorem 5.1: For every $p \in \Box$ and $y \in 1$, the function $g_{\lambda,t}((xt)) = t^{-\lambda+1}(xtg)^{-1} \times J_{\lambda}(xt)(x \in I)$ lies in $\beta_{p,q}$.

With the help of this we define the Hankel translation operator J_t on H^p_{λ} by,

$$(J_t\phi)(x) = \mathcal{H}_{\lambda}(g_{\lambda}, H_{\lambda}\phi)(x), \quad (\phi \in H^p_{\lambda}, x \in I).$$

Theorem 5.2: Let $p \in \Box$, the operator $J_t(t \in I)$ is well-defined and continuous from \mathcal{H}^p_{λ} into itself. Moreover, if $p \geq 1$ then the identity $(J_t\phi)(x) = (J_x\phi)(t)$ $(x_1t \in z)$ holds for every $\phi \in \mathcal{H}^p_{||} la$. For proof see proposition 3.2 [2].

We define the spaces of convolution operators $\beta_{p,q}^*$ as

$$\beta_{p,q}^* = \{T \in H'_{a,\lambda} : t^{-\lambda+1}(H'_{\lambda}T)(t) \in \beta_{p,q}\}$$

with the norm as

$$|T|_{p,q}^* = \|t^{-\lambda+1}(H'_{a,\lambda}T)(t)\|_{p,q} \quad (T \in \beta_{p,q}^*).$$

Theorem 5.3 : The generalized Hankel Transformation is an isomorphism from $\beta_{p,q}^*$ onto $x^{-\lambda+1}\beta_{p,q}$.

Proof : Proof is similar to proof of [2, proposition 4-1].

Now fix $p, q \in \Box$.

By [3, proposition 2.12] $\mathcal{H}_{a,\lambda}$ is dense in \mathcal{H}^p_{λ} . For each $T \in \beta^*_{p,q}$ the continuous mapping *: $(\mathcal{H}_{a,\lambda}, \|\Box\|_{\lambda,p}) \to (\mathcal{H}^q_{\lambda}, \|\Box\|_{\lambda,q})$ $\phi \to T * \phi$

admits a unique extension up to \mathcal{H}^p_{λ} preserving the norm, which we denoting by the same symbol *. Hence $\beta^*_{p,q}$ may be regarded as a subspace of $L(\mathcal{H}^p_{\mid} la, \mathcal{H}^q_{\lambda})$ and the norm restricted to $\beta^*_{p,q}$ will be represented by $\|\Box\|^*_{p,q}$.

Theorem 5.4 : Let $p, q \in \Box$ for each $T \in \beta_{p,q}^*$ and $\phi \in \mathcal{H}_{\lambda}^p$ the identity

$$\mathcal{H}_{\lambda}(T * \phi)(t) = t^{-\lambda+1} (\mathcal{H}_{\lambda}'T)(t) (\mathcal{H}_{\lambda}\phi)(t) \quad (t \in I)$$
(1)

(where \mathcal{H}'_{λ} in the generalized Hankel transformation defined on $\mathcal{H}'_{a,\lambda}$).

Further the norms $\|\Box\|_{p,q}^*$ and $|\Box|_{p,q}^*$ coincide on $\beta_{p,q}^*$.

Proof similar to [2, proposition 4.3].

Let $p, q \in \square$. The Hankel convolution of $T \in \beta_{p,q}^*$ and $u \in H_{\lambda}^{-q}$ is functional $T^*u \in \mathcal{H}_{\lambda}^{-p}$, given by,

$$(T * u, \phi) = \langle u, T * \phi \rangle \quad (\phi \in \mathcal{H}^p_{\lambda}).$$

Note that, for a fixed $T \in \beta_{p,q}^*$, the mapping $u \to T * u$ from H_{λ}^{-q} into H_{λ}^{-p} is the transpose of the mapping $\phi \to T * \phi$ from H_{λ}^p into H_{λ}^q .

Theorem 5.5 : Let $q \in \Box$ and $T \in \mathcal{H}'_{\lambda}$. The following are equivalents

(i) $T \in \beta_q^*$ where β_q^* is defined in [2].

- (ii) The mapping $\phi \to T * \phi$ is continuous from $\mathcal{H}_{a,\lambda}$ into \mathcal{H}^q_{λ} .
- (iii) The mapping $u \to T * u$ is continuous from $\mathcal{H}_{\lambda}^{-q}$ into $\mathcal{H}_{a,\lambda}'$ when $\mathcal{H}_{a,\lambda}'$ is enclosed with either its weak or its strong topology.

Proof : Similar to proof proposition 4.7 [2].

6. Multipliers on $\mathcal{H}^p_{\lambda}(p \in z)$

Consider the spaces $\beta_{p,q}$ of multipliers from \mathcal{H}^p_{λ} into \mathcal{H}^q_{λ} and of $\mathcal{H}^{-q}_{\lambda}$ into $\mathcal{H}^{-p}_{\lambda}$ which is studied above. Now the space β of multiplier of $\mathcal{H}_{a,\lambda}$ and $\mathcal{H}'_{a,\lambda}$ is expressed as a projective-inductive limit of Hilbert spacer as shown below, By [2]

$$\beta_q = ind \lim_{p \to \infty} \beta_{p,q}.$$

Now, the generalized Hankel transformation makes β_q^* and $x^{-\lambda+1}\beta_q$ isomorphic, where the latter space is topological so that the mapping $\phi \to x^{-\lambda+1}\phi(x)$ defined an isomorphism from β_q onto $x^{-\lambda+1}\beta_q$. We may consider,

$$\beta = \operatorname{Proj} \lim_{q \to \infty} \beta_q.$$

Here β is the space of multipliers of $\mathcal{H}_{a,\lambda}$ and $\mathcal{H}'_{a,\lambda}$, topolized in such a way that the generalized Hankel transformation is an isomorphism between $\beta'_{\lambda,*}$ and $x^{-\lambda+1/2}\phi(x)$.

Theorem 6.1 : For each $q \in \Box$, β_q is the space of all continuous multipliers from $\mathcal{H}_{a,\lambda}$ into \mathcal{H}_{λ}^q and from $\mathcal{H}_{\lambda}^{-q}$ into $H'_{a,\lambda}$.

Theorem 6.2: Given $q \in \Box$, let $\mathcal{MD}(\mathcal{H}_{a,\lambda}, \mathcal{H}^q_{\lambda})$ denote the space all those $F \in H'_{a,\lambda}$ such that $x^{-\lambda+1}\phi(x)F(x) \in \mathcal{H}^q_{\lambda}$ for all $\phi \in \mathcal{H}_{a,\lambda}$ and the mapping $\phi \to x^{-\lambda+1}\phi(x)F(x)$ is continuous from $\mathcal{H}_{a,\lambda}$ into \mathcal{H}^q_{λ} . Then $\mathcal{MD}(\mathcal{H}_{a,\lambda}, \mathcal{H}^q_{\lambda}) = x^{-\lambda+1}\beta_q$.

Theorem 6.3 : Let $q \in \Box$

- (i) The identity $x^{-\lambda+1}\beta_q = ind \lim_{k\to\infty} (1+x^2)^k \mathcal{H}^q_{\lambda}$ holds. Moreover $x^{-\lambda+1}\beta_q$ is the strong dual of $proj \lim_{k\to\infty} (1+x^2)^{-1} \mathcal{H}^{-q}_{\lambda}$.
- (ii) The embedding $x^{-\lambda+1}\beta_q \to H'_{a,\lambda}$ is continuous, when $\mathcal{H}'_{a,\lambda}$ is endowed with either its weak or its strong topology.

References

- Chaudhary M. S., Hankel type transform of distribution, Ranchi Univ. Math. Jour., 12 (1981).
- [2] Kucera J. and McKennon K., Continuity of multiplication of distributions. Internat. J. Math. Sci., 4 (1981), 819-822.
- [3] Lebedev N. N., Special Functions and Their Applications, Dover Publications. New York.
- [4] Yo Lighthill M. J., Fourier Analysis and Generalized Functions, Cambridge Univ. Press, (1970).
- [5] Marrero and Betancor J. J., Hankel convolution of generalized functions. Rend. Mat.Appl., 15 (1995), 351-380.
- [6] Molina S. and Trione S. E., n-Dimensional Hankel transform and complex powers of Bessel operator, Integral Transforms and Special Functions, 18 (December 2007), 897-911.
- [7] Poularikas A. D., The Transforms and Applications Handbook, The Electrical Engineering Handbook Series, CRC Press, Florida, (1996).
- [8] Debnath L., Integral Transforms and Their Applications, CRC Press, Florida, (1995).