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Abstract

Rarely some of the authors are using approaches from probability to belief func-
tions. In this paper we have defined a basic belief assignment hence belief function
(hence Bayesian belief function) using probability mass function. Our definition
generalizes Shafer’s [6] definition of Bayesian belief function induced by probability
density function. Shafer mentions that it is unique but that is not the case. Here
we will study various properties of Bayesian belief function defined by us.

1. Introduction

In the world of uncertainty, each and every incidence occurring in our day to day life

always follows some known or unknown probability distribution. Therefore choice of

appropriate probability distribution plays an important role in decision making. Hence

it becomes necessary that we should know common characteristics of all probability

distributions.
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Here we want to find a new transformation which transforms probability mass function

into basic belief assignment. While obtaining this new transformation, we concentrate

on sufficient axioms of basic belief assignment which must be satisfied by our new trans-

formation. Once we have obtained such new transformation, we are able to find other

functions related to belief functions. Also we will check that this new transformation

satisfies some more additional properties so that we can recognize the true class of this

new transformation.

In this paper, firstly we summarize preliminaries of discrete belief functions and proba-

bility functions then we will explain steps in the development of this new transformation.

Also we deduce some results of discrete belief function theory in Shafer‘s book [6]. Now

we summarize preliminaries of discrete belief functions and probability functions.

2. Preliminaries

2.1 Discrete Belief Function Theory

Frame of Discernment : Dictionary meaning of Frame of Discernment is frame of

good judgment insight. The word discern means recognize or find out or hear with

difficulty. From Shafer‘s book [6], if frame of discernment Θ is

Θ = {θ1, θ2, . . . , θn}

then every element of Θ is a proposition. The propositions of interest are in one -to -one

correspondence with the subsets of Θ. The set of all propositions of interest corresponds

to the set of all subsets of Θ, denoted by 2Θ.

If Θ is frame of discernment, then a function m : 2Θ → [0, 1] is called basic probability

assignment whenever m(∅) = 0 and
∑

A⊂Θm(A) = 1. The quantity m(A) is called

A’s basic probability number and it is a measure of the belief committed exactly to

A.The total belief committed to A is sum of m(B), for all subsets B of A. . A function

Bel : 2Θ → [0, 1] is called belief function over Θ if it satisfies Bel(A) =
∑

B⊂Am(B).

If Θ is a frame of discernment, then a function Bel : 2Θ → [0, 1] is belief function if and

only if it satisfies following conditions

1. Bel(∅) = 0.

2. Bel(Θ) = 1.
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3. For every positive integer n and every collection A1, A2, . . . , An of subsets of Θ

Bel(A1 ∪A2 ∪ . . . ∪An) ≥
∑

I⊂{1,2,··· ,n}

(−1)|I|+1Bel(
⋂
i∈I

Ai). (1)

A subset of a frame Θ is called a focal element of a belief function Bel over Θ if

m(A) > 0. The union of all the focal elements of a belief function is called its core.

The quantity Q(A) =
∑

B⊂Θ,A⊂Bm(B) is called commonality number for A which

measures the total probability mass that can move freely to every point of A. A function

Q : 2Θ → [0, 1] is called commonality function for Bel. Also Bel(A) =
∑

B⊂Ā and

Q(A) =
∑

B⊂A(−1)|B|Bel(B̄) for all A ⊂ Θ.

Degree of doubt :

Dou(A) = Bel(Ā)orBel(A) = Dou(Ā)and pl(A) = 1−Dou(A) =
∑

A∩B 6=∅

m(B) (2)

which expresses the extent to which one finds A credible or plausible [6]. We have

relation between belief function, probability mass ( or density ) function and plausibility

function is Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊂ Θ [3, 4]. A function P : Θ→ [0, 1] is called

probability function if

1 ∀A ∈ Θ, 0 ≤ P (A) ≤ 1.

2 P (Θ) = 1.

A set function µ on a frame of discernment Θ is a measure if it satisfies following three

conditions:

1. µ(A) ∈ [0,∞], for all A ∈ Θ.

2. µ(∅) = 0.

3. Additive Property : For collection A1, A2, . . . , An, . . .,

µ(∪∞i=1Ai) =
∑

I⊂{1,2,...,n,...}
I 6=∅

(−1)|A|+1µ(∩∞i=1Ai). (3)

The measure is finite or infinite as µ(Θ) < ∞ or µ(Θ) = ∞. It is probability measure

if µ(Θ) = 1 [1]. In Shafer‘s book [6], we have Bayesian belief function as: If Θ is frame

of discernment then a function Bel : 2Θ → [0, 1] is called Bayesian belief function if
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1 Bel(∅) = 0,

2 Bel(Θ) = 1,

3 Bel(A ∪B) = Bel(A) +Bel(B) whenever A,B ∈ Θ and A ∩B = ∅.

Suppose Bel : 2Θ → [0, 1] is belief function. Then following statements are equivalent:

1 Bel is Bayesian.

2 All of Bel‘s focal elements are singletons.

3 Bel awards a zero commonality number to any subset containing more than one

element.

4 Bel(A) = 1−Bel(Ā) for all A ⊂ Θ.

Also we have some other basic belief assignments and we will briefly introduce these

bba‘s.

Classical Pignistic Probability:-

Philippe Smets [8] had given basic idea and implemented in Transferable Belief Model. It

transfers positive mass of belief of each non-specific element onto the singletons involved

in that element split by the cardinality of the proposition when working with normalized

basic belief assignments. In TBM, the classical pignistic probability is

BetP (∅) = 0 and ∀ A ∈ 2Θ − {∅}

BetP (A) =
∑
B∈2Θ,
B 6=∅

|A ∩B|
|B|

m(B)

1−m(∅)
. (4)

In shafer [6], m(∅) = 0 hence above formula becomes

BetP (θi) = mθi +
∑
B∈2Θ,
θi⊂B

m(B)

|B|
andBetP (A) =

∑
θi∈A

BetP (θi). (5)

Sudano’s Probabilities:-

John Sudano [9, 10, 11], had developed transformations which approximates quantative

belief mass m by subjective probabilities as follows:
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1 PrP l(.) and PrBel(.):- For all A 6= ∅ ∈ Θ,

PrP l(A) = Pl(A)
∑
B∈2Θ,
A⊆B

m(B)

CS(Pl(B))
(6)

and

PrBel(A) = Bel(A)
∑
B∈2Θ,
A⊆B

m(B)

CS(Bel(B))
(7)

where

CS(Pl(B)) =
∑

Bi∈2Θ,
|Bi|=1,
∪iBi=B

Pl(Bi) and CS(Bel(B)) =
∑

Bi∈2Θ,
|Bi|=1,
∪iBi=B

Bel(Bi)[9]. (8)

2 Transformation Proportional to Normalized Plausibility:-

PrNPl(A) =
1

4
∑
B∈2Θ,
A∩B 6=∅

Pl(B) =
1

4
Pl(A) (9)

where 4 is a normalizing factor with
∑

A∈Θ PrNPl(A) = 1[9, 11].

3 Transformation Proportional to all Plausibilities :-

PraP l(A) = Bel(A) + k · Pl(A)wherek =

∑
B∈2Θ Bel(B)∑
B∈2Θ Pl(B)

[9, 11] (10)

4 The Hybrid Pignistic Probability:-

PrHyb(A) = PraP l(A) ·
∑
B∈2Θ,
A⊆B

m(B)

CS(PraP l(B))
(11)

where

CS(PraP l(B)) =
∑

Bi∈2Θ,
|Bi|=1,
∪iBi=B

PraP l(Bi)[9, 11]. (12)

Cuzzolin’s Intersection Probability:-

In [2], Cuzzolin developed transformation CuzzP (.) for any finite and discrete frame of

discernment Θ n ≥ 2, satisfying Shafer’s model as

CuzzP (θi) = m(θi) +
4(θi)∑n
j=14(θj)

× TNSM (13)
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with 4(θi) = Pl(θi)−m(θi) and

TNSM = 1−
n∑
j=1

m(θj) =
∑

A∈2Θ,|A|>1

m(A). (14)

Shannon Entropy;-

Shannon [7] developed transformation discrete probability measure H(.) for discrete

frame of discernment Θ by

H(P ) = −
n∑
i=1

P ({θi})log2P ({θi}) (15)

H(P ) is maximal for uniform probability distribution over Θ i.e. Hmax = −
∑n

i=1(1/n)log2(1/n) =

log2(n) and H(P ) is minimal for a totally deterministic probability measure i.e. P (θi) =

1 for some i ∈ {1, 2, . . . , n} and P (θj) = 0 for j 6= i.

The Probability Information Content:-

In [10], the probability information content (PIC) of discrete probability P (.) for discrete

frame of discernment Θ is

PIC(P ) = 1 +
1

Hmax
·
n∑
i=1

P ({θi})log2P ({θi}) (16)

Normalized Shannon entropy is dual of PIC metric. Also PIC(P ) = 1− H(P )

Hmax
.

Necessary series results are referred from Hall’s book [5].

3. Belief Function by Glenn Shafer

In Shafer‘s book [6], a belief function induced by probability density function is given

by following theorem:

Theorem 3.1 : A function Bel : 2Θ → [0, 1] is a Bayesian belief function if and only if

there exists a function p : Θ→ [0, 1] such that
∑

θ∈Θ p(θ) = 1 and Bel(A) =
∑

θ∈A p(θ)

for all A ⊂ Θ

Note:- If above such Bayesian belief function exists then it is unique and is given by

p(θ) = m(θ). If Θ = θ1, θ2, . . . , θn is a frame of discernment ( in discrete probability

distributions Θ is sample space or population space) then

m(A) =

{
p(A) If A is singleton

0 otherwise
(17)
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with m(θi) = p(θi), i = 1, 2, . . . , n

Here
∑n

i=1 p(θi) = 1.

3.1 Belief of Subset of Θ

Let A ⊆ Θ, then belief of set A by (17) is

Bel(A) =
∑
B⊆A

m(B) = p(A). (18)

Therefore Bel(A) = p(A),∀A ⊆ Θ.

Remarks :

1 Bel(∅) = p(∅) = 0.

2 Bel(Θ) = p(Θ) = 1 .

3 Bel(θi) = m(θi), ∀θi ∈ Θ .

4 For any subset A ⊆ Θ, 0 ≤ p(A) ≤ 1⇒ 0 ≤ Bel(A) ≤ 1.

5 Bel is a probability measure.

6
∑

A⊆ΘBel(A) =
∑

A⊆Θ p(A) = 2n−1.

3.2 Commonality of Subset of Θ

Let A ⊆ Θ . Then commonality of subset A by (17) is

Q(A) =
∑
B⊇A

m(B)

where Q(A) =


m(A) if A is singleton set.

1 if A = ∅.
0 otherwise.

(19)

which is clear by definition of m, since bba of non-singleton set, including ∅ is 0. For

any non-empty subset A ⊆ Θ, consider∑
A⊆Θ

Q(A) =
∑
A⊆Θ

m(A), if A is singleton set

=
∑
θi⊆Θ

m(θi

= 1.

(20)
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Also, Q(∅) = 1.

Therefore,
∑

A⊆ΘQ(A) =
∑
∅=A⊆ΘQ(A) +

∑
∅6=A⊆ΘQ(A) = 1 + 1 = 2.

3.3 Plausibility of Subset of Θ

Let A ⊆ Θ . Then plausibility of subset A by (17) is

Pl(A) =
∑

A∩B 6=∅

m(B)

=
∑

A∩B 6=∅

p(B), if B is singleton set ( by definition of m )

= p(A)

(21)

Remarks :

1 For any subset A ⊆ Θ, Bel(A) = Pl(A).

2
∑

A⊆Θ Pl(A) =
∑

A⊆ΘBel(A) = 2n−1.

3 In Shafer‘s book [6], We have

Q(A) = κq(A)

where Q(A) = commonality of A

κ = constant

q(A) = function q : Θ→ [0,∞].

(22)

Here we can take κ = 1 = constant and q(A) = m(A) where m : Θ → [0, 1] ⊂
[0,∞] with A maps m(A).

3.4 Some Statistical Concepts

In statistics, some concepts viz. distribution function, expectation, variance, standard

deviation, skewness and kurtosis play important roles in determination of nature of

probability distributions. As we have result about belief function, probability function

and plausibility function as : Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊆ Θ [3, 4]. Now we

introduce variable V whose values corresponds to subsets of Θ. Here we can apply

above these concepts for basic belief assignments induced by probability mass function.
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Values of above statistical quantities can be obtained similar to concepts in statistics.

Finally we draw conclusions in terms of subsets of Θ instead of values of variable V .

Here fortunately the quantities obtained with help of basic belief assignment m(V ) are

equal to quantities obtained with help of probability mass function p(V ) for probability

distributions by definition of m(A) where A is subset of Θ .

Thus the results obtained by Bayesian belief function ( in Shafer‘s book [6] ) and prob-

ability mass function of probability distribution are same.

4. A New Basic Belief Assignment induced by Probability Mass Func-

tion

In this section, we obtain new basic belief assignment induced by probability mass

function of discrete probability distribution.

4.1 Prerequisites in obtaining a new transformation

When |Θ| > 1 then we observe that sum of probabilities of all subsets is not equal to 1.

But if we find a generalized formula about repeation of singleton set of Θ in all subsets

of Θ then we have following result as:

Theorem 4.1 : If |Θ| = n then every element in frame of discernment Θ is repeated

exactly 2n−1 number of times and sum of probabilities of all subsets of Θ is 2n−1.

Proof:- We prove it in two parts.

Part I:

In this part, we show that every element in frame of discernment Θ is repeated exactly

2n−1 number of times. we prove it by principle of mathematical induction on n i.e.

number of exhaustive elements of frame of discernment Θ.

Step 1 : claim: Result is true for n = 1.

Let |Θ| = 1. ∴ Consider Θ = {a},
⇒ P(Θ) = {∅, {a}}.
i.e. {a} is repeated exactly 1 = 21−1 times.

Step 2 : Assume that result is true for n = k number of exhaustive elements frame

of discernment Θ.

i.e. every element in frame of discernment Θ is repeated exactly 2k−1 number of times.

Step 3 : claim: Result true for n = k + 1 number of exhaustive elements frame of

discernment Θ.
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Let Θ = {θ1, θ2, . . . , θk}
Now we obtain frame of discernment Θ‘ from Θ by adjoining element θk+1. Therefore

Θ‘ = {θ1, θ2, . . . , θk, θk+1}

and |Θ‘| = k + 1

Partitioning power set of Θ‘ into X and Y such that

X = { subsets of Θ‘ not containing θk+1 } = Θ and

Y = { subsets of Θ‘ containing θk+1 }

= { Element of X ∪ θk+1}

Here number of subsets in X = Number of subsets in Y .

By inspecting set Y , we notice that element θk+1 lies in every subset in Y . As every

non-empty subset of frame of discernment is expressed as union of its singleton subsets

i.e. exhaustive elements of frame of discernment. Hence element θk+1 is repeated ex-

actly 2k times.

Here every element of frame of discernment Θ‘ except element θk+1, is repeated

same number of times in X and Y . By step 2 of principle of mathematical induction,

every element of frame of discernment Θ is repeated exactly 2k−1 times. In all every

element of frame of discernment Θ‘ except θk−1 is repeated exactly 2k−1 + 2k−1 = 2k

times.

Thus every element of frame of discernment Θ‘ is repeated exactly 2k times. i.e. result

is true for all frame of discernments having n = k + 1 exhaustive elements.

By principle of mathematical induction, every element of frame of discernment Θ having

n exhaustive elements is repeated exactly 2n−1 times.

Part II:

In this part we will prove that sum of probabilities of all subsets of frame of discernment

Θ is 2n−1.

Since the elements θi of frame of discernment Θ are exhaustive i.e. ∀ θi, θj ∈ Θ θi∩θj =

∅,
p(θi ∩ θj) = 0, ∀ θi, θj ∈ Θ
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By repeated application of above result, we get

p(θi ∩ θj ∩ · · · ∩ θk) = 0, ∀ θi, θj , . . . , θk ∈ Θ

Hence

p(θi ∪ θj) = p(θi) + p(θj), ∀ θi, θj

i.e. In general,

p(θi ∪ θj ∪ · · · ∪ θk) = p(θi) + p(θj) + · · ·+ p(θk), ∀ θi, θj

i.e.

p(∪iθi) =
∑
i

p(θi), ∀ θi

i.e.

for A ∈ Θ, p(A) = p(∪θi∈Aθi) =
∑
θi∈A

p(θi).

i.e. Probability of any subset A of Θ is summation of probabilities of exhaustive elements

θi of frame of discernment contained in A. Thus, while adding probabilities all subsets

of frame of discernment Θ, probability of exhaustive element goes on adding equal to

number of times concerned exhaustive element is repeated.

By Part I, every exhaustive element θi ∈ Θ is repeated 2n−1 times. Therefore sum of

probabilities due to single exhaustive element is 2n−1p(θi).

By applying same criteria for all exhaustive elements of frame of discernment Θ, we get∑
A∈Θ

p(A) =
∑
A∈Θ

∑
θi∈Θ

p(θi),

=
∑
θi∈Θ

2n−1p(θi)

= 2n−1
∑
θi∈Θ

p(θi)

= 2n−1.

(23)

∴ Sum of probabilities of all subsets of frame of discernment Θ is 2n−1.
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Remark 1 : If |Θ| = n then by counting
∑

θi∈Θ p(θi) =
∑n

i=1 p(θi).

Now consider
∑
A⊆Θ

p(A) =
∑
A⊆Θ

∑
θi∈A

p(θi)

2n−1 =
∑
A⊆Θ

∑
θi∈A

p(θi)

i.e.
∑
A⊆Θ

∑
θi∈A

p(θi) = 2n−1.

(24)

Remark 2 : Also, we observe that if |Θ| = n then any {θi} ∈ Θ is repeated 2n−1 times

i.e. {θ1} appears 2n−1 times in subsets of Θ. Therefore the probability corresponding

to {θi} ∈ Θ is added 2n−1 times. Also, if |Θ| = n then
∑

A∈Θ p(A) = 2n−1. Hence in

order to get
∑

A∈Θ p(A) = 1, we have to divide each probability entry by a quantity

2n−1.

∴ m({θi}) =
p({θi})
2n−1

, ∀θi ∈ Θ. (25)

Remark 3 : Now, let A = {{θ1}, {θ2}, . . . , {θk}} ⊆ Θ. In discrete space, since

singletons are disjoint hence the intersection of any number of singleton subsets of Θ is

always empty set. Therefore

p(A) = p({θ1} ∪ {θ2} ∪ · · · ∪ {θk})

= p({θ1}) + p({θ2}) + · · ·+ p({θk})

= 2n−1 ∗m(A), where m(A) =
∑
{θ}∈A

m({θ})
(26)

Therefore, we get

m(A) =
p(A)

2n−1
, ∀A ⊆ Θ. (27)

Now we check for some properties which are satisfied by this new transformation:

Theorem 4.2 : The function m : 2Θ → [0, 1] defined by (27), m(A) =
P (A)

2n−1
is a basic

probability assignment.

Proof : As 0 ≤ p(A) ≤ 1, and for n ≥ 1, 2n−1 ≥ 0.

⇒ 0 ≤ m(A) =
p(A)

2n−1
≤ 1.

As p(∅) = 0, and forn ≥ 1, 2n−1 ≥ 0.

⇒ m(∅) =
p(∅)
2n−1

= 0.
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Consider
∑
A⊂Θ

m(A) =
∑
A⊂Θ

p(A)

2n−1

=
1

2n−1

∑
A⊂Θ

p(A) = 1.

(28)

Therefore, m(A) =
p(A)

2n−1
is a basic probability assignment.

By using above bba (27), we have m(A) =
p(A)

2n−1
, the belief function Bel : 2Θ → [0, 1]

becomes

Bel(A) =
∑
B⊂A

m(B)

=
∑
B⊂A

p(B)

2n−1
.

(29)

Result : In [6], If A is a finite set then∑
B⊂A

(−1)|B| =

{
1 if A = ∅
0 otherwise.

(30)

Here, we give some deductions of some theorems in Shafer‘s book [6] by using (27).

Theorem 4.3 : The belief function Bel : 2Θ → [0, 1] defined by (27), Bel(A) =∑
B⊂A

p(B)

2n−1
satisfies,

1. Bel(∅) = 0.

2. Bel(Θ) = 1.

3. Sub-additive Property :- For collection A1, A2, . . . , An,

Bel(∪ni=1Ai) ≥
∑

I⊂1,2,...,n
I 6=∅

(−1)|A|+1Bel(∩ni=1Ai).

Proof : By definition, Bel(A) =
∑

B⊂A
p(B)

2n−1
, we have

Bel(∅) =
∑

B⊂A=∅

m(B)

=
∑
B⊂∅

p(B)

2n−1
= 0.

(31)
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Bel(Θ) =
∑
B⊂A

m(B)

=
∑
B⊂Θ

p(B)

2n−1

=
1

2n−1

∑
B⊂Θ

p(B) = 1.

(32)

For a collection A1, A2, . . . , An of subsets of Θ. Let I(B) = {i|1 ≤ i ≤ n,B ⊂ Ai}, for

each B ⊂ Θ.

Consider
∑

I⊂{1,2,...,n}
I 6=∅

(−1)|I|+1Bel(∩ni=1Ai)

=
∑

I⊂{1,2,...,n}
I 6=∅

(−1)|I|+1
∑
B⊂∩Ai
i∈Ai

m(B)

=
∑
B⊂Θ
I(B)6=∅

m(B)
∑
I⊂I(B)
I 6=∅

(−1)|I|+1

=
∑
B⊂Θ
I(B)6=∅

m(B)(1−
∑

I⊂I(B)

(−1)|I|)

=
∑
B⊂Θ
I(B)6=∅

m(B) .......... By result above

=
∑
B⊂Θ

B⊂Ai, for some i

m(B)

=
∑
B⊂Θ

B⊂Ai, for some i

p(B)

2n−1

≤
∑

B⊂∪Ai

p(B)

2n−1

=
∑

B⊂∪Ai

m(B)

= Bel(∪Ai).

Theorem 4.4 : Suppose Bel : 2Θ → [0, 1] is the belief function given by basic proba-

bility assignment m : 2Θ → [0, 1]. Then

m(A) =
∑
B⊂A

(−1)|A−B|Bel(B); for all A ⊂ Θ.



A NEW BELIEF FUNCTION INDUCED BY PROBABILITY ... 15

is a basic probability assignment.

Proof : Consider a function Bel : 2Θ → [0, 1] satisfying conditions in above theorem

and define a function m on 2Θ by

m(A) =
∑
B⊂A

(−1)|A−B|Bel(B)

=
∑
B⊂A

(−1)|A−B|
∑
C⊂B

m(C)

=
∑
B⊂A

(−1)|A−B|
∑
C⊂B

p(C)

2n−1

(33)

Claim : m(A) is a basic probability assignment.

Consider m(∅) =
∑

B⊂A=∅

(−1)|A−B|
∑
C⊂B

p(C)

2n−1

=
∑

B⊂A=∅

(−1)|A−B|
∑

C⊂B=∅

p(C)

2n−1

=
∑

B⊂A=∅

(−1)|A−B|
∑

C⊂B=∅

p(∅)
2n−1

since C ⊂ B ⊂ A = ∅ ⇒ C = ∅.

=
∑

B⊂A=∅

(−1)|A−B|
∑

C⊂B=∅

0

2n−1
Since p(∅) = 0

=
∑

B⊂A=∅

(−1)|A−B|0.

= 0.

We have
∑
A⊂Θ

m(A) = Bel(Θ)

= 1.

Let A = {θ1, θ2, . . . , θn}, where n ≥ 1 and θi are distinct.

Let Ai = A− θi.
⇒ A1, A2, . . . , An are subsets of A which excludes only one element of A.

⇒ Every proper subset B of A can be uniquely expressed as an intersection of Ai.
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i.e. If A−B = {θi1 , θi2 , . . . , θik} then B = Ai1 ∩Ai2 ∩ · · · , Aik .

Therefore m(A) =
∑
B⊂A

(−1)|A−B|Bel(B)

= Bel(A) +
∑

I⊂1,2,...,n
I 6=∅

(−1)|I|Bel(∩i∈IAi)

= Bel(A)−
∑

I⊂1,2,...,n
I 6=∅

(−1)|I|+1Bel(∩i∈IAi)

≥ 0.

Here A = A1 ∪A2,∪ · · · ∪An and by sub-additivity property of belief functions. ∴ m(A) ≥
0.

∴, By above three claims 1, 2 and 3, m(A) is a basic probability assignment.

The basic probability assignment function defined by (27), m(A) =
p(A)

2n−1
, for any subset

A ∈ Θ, is a non-decreasing function. Also The belief function defined by basic proba-

bility assignment (27), m(A) =
1

2n−1
p(A), for any subset A ∈ Θ, is a non-decreasing

function. Bel(θ) = 1, Bel(φ) = 0 and if A 6= Θ, A 6= ∅ i. e. ∅ ⊆ A ⊆ Θ, then

0 < Bel(A) < 1. In all, 0 ≤ Bel(A) ≤ 1, ∀A ⊆ Θ. The belief function defined by basic

belief assignment (27), m(A) =
p(A)

2n−1
, for any subset A of Θ, is a probability measure.

Note : We have result in [6] as:

Suppose Θ is a finite set and f and g are functions on 2Θ. Then

f(A) =
∑
B⊂A

g(B)

for all A ⊂ Θ if and only if

g(A) =
∑
B⊂A

(−1)|A−B|f(B), for all A ⊂ Θ.

In this result, we can substitute f ≡ Bel and g ≡ m on 2Θ. Suppose C is the core of

a belief function Bel over Θ. Then a subset B ⊂ Θ satisfies Bel(B) = 1 if and only if

C ⊂ B. Let C be collection of subsets of Θ having non-zero probability. Then a subset

B ⊂ Θ satisfies Bel(B) = 1 if and only if C ⊂ B.

With our new basic belief assignment, relation between belief function and commonality
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function by using (27), reduces to

∑
C⊂A

p(C) =
∑
B⊂(̄A)

(−1)|B|
∑
B⊂C

p(C)

and
∑
A⊂C

p(C) =
∑
B⊂A

(−1)|B|
∑
C⊂(̄B)

p(C), for all A ⊂ Θ.

Notes :

1. If A = Θ then p(A) = 1.

∴ Q(A) =
1

2n−1

∑
B⊇A p(B) = m(Θ).

2. If A = ∅ then p(A) = 0.

∴ Q(A) =
1

2n−1

∑
B⊇A p(B) = 1 .

3. If A 6= Θ, A 6= ∅ i. e. ∅ ⊂ A ⊂ Θ, then

Q(A) =
1

2n−1

∑
B⊇A

∑
{b}∈B

p({b}).

In all,
1

2n−1
≤ Q(A) ≤ 1,∀A ⊆ Θ.

With our new basic belief assignment, theorem (27) in Shafer‘s book [6] becomes

Theorem 4.5 : Suppose C is a collection of subsets of Θ having non-zero probability

and Q is a commonality function of a belief function over Θ. Then an element θ is in C
if and only if m({θ}) > 0 i.e p({θ}) > 0.

Remark : In necessary and sufficient condition for subset of Θ to lie in core C,
we can not get focal element in core having zero commonality number because non-

zero probability give rise to non-zero commonality number by the transformation (27),

m(A) =
p(A)

2n−1
.

Determination of value K :-

We have

K = (
∑
A⊂Θ
A6=∅

(−1)|A|+1q(A))
−1

with Q(A) = Kq(A) where q : (2Θ−∅)→ [0,∞) is a known function. By (27), we have
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Q(A) =
∑

A⊂B
p(B)

2n−1
,

Q(A) = Kq(A)

⇒
∑
A⊂B

p(B)

2n−1
= Kq(A)

⇒ K =

∑
A⊂B

p(B)

2n−1

q(A)

(34)

Here we get two values of K and both are equal. Therefore

K = (
∑
A⊂Θ
A 6=∅

(−1)|A|+1q(A))
−1

=

∑
A⊂B

p(B)

2n−1

q(A)
. (35)

Theorem 4.6 : A belief function Bel : 2Θ → [0, 1] obtained by bba (27),

m(A) =
p(A)

2n−1
, is a Bayesian belief function.

Proof : We have Bel(∅) = 0 and Bel(Θ) = 1. Now it is enough to show that

Bel(A ∪B) = Bel(A) +Bel(B), if A ∩B = ∅.

Consider two distinct subsets A,B ∈ Θ, such that p(A) 6= 0 and p(B) 6= 0.

By bba m(A) =
p(A)

2n−1
, we get

m(A) =
p(A)

2n−1
6= 0, and m(B) =

p(B)

2n−1
6= 0.

We have p(A ∪B) = p(A) + p(B)− p(A ∩B). Since A and B are disjoint subsets of Θ
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then A ∩B = ∅ hence p(A ∩B) = p(∅) = 0. ∴ m(A ∩B) = 0 hence Bel(A ∩B) = 0.

Consider Bel(A ∪B) =
∑

C⊂A∪B
m(C)

=
∑

C⊂A∪B

p(C)

2n−1

=
1

2n−1

∑
C⊂A∪B

p(C)

=
1

2n−1
[
∑
C⊂A

p(C) +
∑
C⊂B

p(C)−
∑

C⊂A∩B
p(C)]

Since A and B are disjoint subsets in Θ

=
∑
C⊂A

p(C)

2n−1
+

∑
C⊂B

p(C)

2n−1
−

∑
C⊂A∩B

p(C)

2n−1

=
∑
C⊂A

p(C)

2n−1
+

∑
C⊂B

p(C)

2n−1
,

since p(A ∩B) = 0

hence for any subset C ⊂ A ∩B.

=
∑
C⊂A

m(C) +
∑
C⊂B

m(C)

= Bel(A) +Bel(B).

(36)

Hence for disjoint subsets A,B ∈ Θ, Bel(A ∪B) = Bel(A) +Bel(B).

Therefore, belief function Bel : 2Θ → [0, 1] obtained by bba

m(A) =
p(A)

2n−1
, is Bayesian belief function.

In Shafer‘s book [6], we have following theorem and note as:

Theorem 4.7 : A belief function Bel : 2Θ → [0, 1] is Bayesian if and only if its basic

probability assignment m is given by

m({θ}) = Bel({θ})

and m(A) = 0, for all non-singleton subsets A of Θ .

Note : If Bel is Bayesian belief function then the function m is unique.

But belief function Bel defined by our transformation (27), m(A) =
p(A)

2n−1
is a Bayesian

belief function hence uniqueness of Bayesian belief function is not true. Also it is

generalization of basic probability assignment in above theorem.
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Plausibility Function : by (27), we have, for any A ⊆ Θ,

Pl(A) =
∑

B∩A 6=∅

m(B)

=
1

2n−1

∑
B∩A 6=∅

∑
{b}∈B

p({b}).
(37)

Notes :

1. If A = Θ then p(A) = 1.

∴ Pl(A) =
1

2n−1

∑
B∩A 6=∅ p(B) = 1

2. If A = ∅ then p(A) = 0.

∴ Pl(A) =
1

2n−1

∑
B∩A 6=∅ p(B) = 0

3. If A 6= Θ, A 6= ∅ i. e. ∅ ⊂ A ⊂ Θ, then

Pl(∅) < Pl(A) =
1

2n−1

∑
B∩A 6=∅

∑
{b}∈B

p({b}) < Pl(Θ).

⇒ 0 < Pl(A) < 1

In all, 0 ≤ Pl(A) ≤ 1,∀A ⊆ Θ.

Theorem 4.8 : Suppose Bel : 2Θ → [0, 1] obtained by bba (27), m(A) =
p(A)

2n−1
, is Belief

function with plausibility function Pl. Then following assertions are equivalent:

1 Bel is Bayesian.

2 Bel(A) +Bel(Ā) = 1, ∀ A ⊆ Θ.

Proof : As we know that A ∩ Ā = ∅ and A ∪ Ā = Θ. Consider

A ∪ Ā = Θ

⇒ Bel(A) +Bel(Ā) = 1, by Bayesian belief function Bel.

Conversely, assume that Bel(A) +Bel(Ā) = 1. Consider

Bel(A) +Bel(Ā) = Bel(A ∪ Ā)−Bel(A ∩ Ā)

⇒ Bel(∅) = 0



A NEW BELIEF FUNCTION INDUCED BY PROBABILITY ... 21

By combining it with Bel(A ∪B) = Bel(A) +Bel(B)−Bel(A ∩B) we get

⇒ Bel(A ∪B) = Bel(A) +Bel(B) if A ∩B = ∅ and Bel(∅) = 0.

Therefore Bel is a Bayesian.

Theorem 4.9 : For all A ⊂ Θ,

Bel(A) =
p(A)

2n−k
and Pl(A) = p(A) +

(2k − 1)

2k
p(Ā). (38)

where n = |Θ| and k = |A|.

Proof : Let n = |Θ| and k = |A|, for some A ⊂ Θ. WOLOG, we assume that

A = {A1, A2, . . . , Ak}, where Aj , j = 1, 2, . . . , k, are singlton sets. Let p(Aj) = sj , j =

1, 2, . . . , k and p(A) =
∑k

i=1 p(Aj) =
∑k

i=1 sj . Therefore by (27), m(Aj) =
sj

2n−1
and

m(A) =

∑k
i=1 p(Aj)

2n−1
. Consider

Bel(A) =
∑
B⊆A

m(B)

=
1

2n−1
{
∑
B⊆A

p(B)}

=
1

2n−1
{s1 + s2 + · · ·+ sk + s1 + s2 + s1 + s3 + · · ·+ s1 + sk

+ s2 + s3 + s2 + s4 + · · ·+ s2 + sk + · · ·+ sk−1 + sk

+ · · ·+ s1 + s2 + · · ·+ sk}

=
1

2n−1
{2k−1(s1 + s2 + · · ·+ sk)}

=
1

2n−k

∑
Aj∈A

p(Aj)

=
1

2n−k
p(A)

=
p(A)

2n−k
.

(39)
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Consider Pl(A) = 1−Bel(Ā)

= 1− p(Ā)

2n−(n−k)

=
2k − p(Ā)

2k

=
2k(p(A) + p(Ā))− p(Ā)

2k

=
2kp(A) + (2k − 1)p(Ā)

2k

= p(A) +
(2k − 1)

2k
p(Ā).

(40)

Notes :

1 By above theorem, we have Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊆ Θ.

2 If Bel is a Bayesian belief function then the function p is given by p(θ) = 2n−1m(θ).

we have pignistic probability function by using (4), (5) and (27) as:

Bet p(x) =
∑
A⊆A,
A 6=∅

m(A)

1−m(∅)
IA(x)

|A|
, ∀x ∈ A.

=
1

1−m(∅)
∑
A⊆A,
A 6=∅

m(A)
IA(x)

|A|
.

=
1

1−m(∅)
∑
A⊆A,
A 6=∅

p(A)

2n−1

IA(x)

|A|
.

=
1

1−m(∅)
∑
A⊆A,
A 6=∅

∑
{a}∈A p({a})

2n−1

IA(x)

|A|
.

(41)

Also we have Bet p(A) =
∑

x∈ABet p(x).

5. Some Results about Finding Belief Functions, Commonality Func-

tions and Plausibility Functions

Theorem 5.1 : If |Θ| = n 0 ≤ r ≤ n then the no. of subsets of Θ containing r

elements of Θ are 2n−r.

Theorem 5.2 : If |Θ| = n and |A| = r, then number of subsets B of Θ such that

A ∩B 6= ∅ are 2n−r(2r − 1).
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Here we use result that singletons in discrete space, are disjoint therefore for any subsets

A and B of Θ, p(A ∪B) = p(A) + p(B).

Theorem 5.3 : For any subset A of

Θ, Bel(A) =
p(A)

2n−r
where |Θ| = n and |A| = r. (42)

Theorem 5.4 : For any A ⊂ Θ with |Θ| = n, |A| = r then

Q(A) == 21−r ∗
∑
{a}∈A

p({a}) +
1

2r)
∗

∑
{a}6∈A

p({a}). (43)

Theorem 5.5 : For any subset A of Θ with |Θ| = n and |A| = r,

Pl(A) =
∑
{a}∈A

p({a}) +
∑
{a}6∈A

(1− 1

2r
)p({a}). (44)

In general, observing carefully, we noticed that number of repetitions of element of Θ is

as follows:

Let |A| = r and |Θ| = n if {a} ∈ Θ then {a} appears 2n−1 times and if {a} 6∈ Θ then

{a} appears 2n−2 + 2n−3 + 2n−4 + · · · + 2n−(r+1) times hence 2n−(r+1)(2r − 1) times.

Therefore formula for plausibility function becomes

Pl(A) =
∑

A∩B 6=∅

m(B)

= 2n−1
∑
{a}∈A

p({a})
2n−1

+ 2n−(r+1)(2r − 1)
∑
{a}6∈A

p({a})
2n−1

=
∑
{a}∈A

p({a}) + 2n−(r+1)−n+1(2r − 1)
∑
{a}6∈A

p({a})

=
∑
{a}∈A

p({a}) + 2−r(2r − 1)
∑
{a}6∈A

p({a})

=
∑
{a}∈A

p({a}) + (1− 1

2r
)
∑
{a}6∈A

p({a}).

(45)

6. Conclusion

In this paper, we have defined new basic belief assignment induced by probability mass

function of discrete probability distribution. With this, we have deduced some theorems

about basic belief assignment in Shafer book [6]. Also we have obtained formulae to



24 D. N. KANDEKAR

calculate belief, commonality and plausibility functions in this regard.
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