International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 1-13

UNIQUENESS AND VALUE DISTRIBUTION FOR q-SHIFT DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE ${ }^{1}$ AND SANGEETHA ANAND ${ }^{2}$
1,2 Department of Mathematics,
Jnana Bharathi Campus, Bangalore University, Bangalore-560056, India
E-mail: ${ }^{1}$ harinapw@gmail.com

Abstract

We investigate the zero distribution of q-shift difference polynomials of entire and meromorphic functions with zero order and obtain some results that extend previous results of Liu et al. [18]

1. Introduction and Main Results

Let $f(z)$ and $g(z)$ be two non constant meromorphic functions in the complex plane. By $S(r, f)$, we denote any quantity satisfying $S(r, f)=o(T(r, f))$, as $r \longrightarrow \infty$, possibly outside a set of r with finite linear measure. The meromorphic function α is called a small function of $f(z)$, if $T(r, \alpha)=S(r, f)$. If $f(z)-\alpha$ and $g(z)-\alpha$ have same zeros, counting multiplicity (ignoring multiplicity), then we say that $f(z)$ and $g(z)$ share the

Key Words : Value Distribution, Entire functions, Uniqueness, Meromorphic functions, Difference polynomials.
2000 AMS Subject Classification : Primary 30D35.
(c) http: //www.ascent-journals.com
small function $\alpha \mathrm{CM}(\mathrm{IM})$.(see, e.g.,[1,2]) The logarithmic density of a set F_{n} is defined as follows:

$$
\limsup _{r \rightarrow \infty} \frac{1}{\log r} \int_{[1, r] \cap F_{n}} \frac{1}{t} d t
$$

In recent years, there has been an increasing interest in studying the uniqueness problems related to meromorphic functions and their shifts or difference operators(see, e.g., [3-15]). Our aim in this article is to investigate the value distribution for q -shift polynomials of transcendental meromorphic and entire functions with zero order.

Liu et al.[13] considered uniqueness of difference polynomials of meromorphic functions, corresponding to uniqueness theorems of meromorphic functions sharing values(see, e.g.,[16]) and obtained the following results.

Theorem A : Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order. Suppose that c is a non-zero complex constant and n is an integer. If $n \geq 14$ and $f^{n}(z) f(z+c)$ and $g^{n}(z) g(z+c)$ share 1 CM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Theorem B: Under the conditions of Theorem A, if $n \geq 26$ and $f^{n}(z) f(z+c)$ and $g^{n}(z) g(z+c)$ share 1 IM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Recently, Liu et al. [18], considered the case of q-shift difference polynomials and extended the Theorem A as follows :

Theorem C: Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with $\rho(f)=\rho(g)=0$. Suppose that q and c are two non-zero complex constants and n is an integer. If $n \geq 14$ and $f^{n}(z) f(q z+c)$ and $g^{n}(z) g(q z+c)$ share 1 CM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Theorem D: Under the conditions of Theorem C, if $n \geq 26$ and $f^{n}(z) f(q z+c)$ and $g^{n}(z) g(q z+c)$ share 1 IM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Theorem E: Let $f(z)$ and $g(z)$ be two transcendental entire functions with $\rho(f)=$ $\rho(g)=0$, let q and c be two non-zero complex constants, let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+$ $\ldots+a_{1} z+a_{0}$ be a non-zero polynomial , where $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$, are complex constants and k denotes the number of the distinct zero of $P(z)$. If $n>2 k+1$ and $P(f(z)) f(q z+c)$ and $P(g(z)) g(q z+c)$ share 1 CM , then one of the following results holds:
(1) $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where $d=G C D\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\}$ and

$$
\lambda_{j}=\left\{\begin{array}{ll}
n+1, & a_{j}=0, \\
j+1, & a_{j} \neq 0,
\end{array} \quad j=0,1, \ldots, n\right.
$$

(2) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) w_{1}(q z+c)-P\left(w_{2}\right) w_{2}(q z+c)
$$

In this paper, we deal with value distribution for q-shift difference polynomials of transcendental meromorphic and entire functions of the form $f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)$ in Theorems C, D,E and prove the following theorems:
Theorem 1 : Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with $\rho(f)=\rho(g)=0$. Let q and c be two non-zero complex constants, n an integer and $P_{m}(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$. If $n \geq 5 m+19$ and $f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)$ share 1 CM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{d}=1, d=G C D(n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1), a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$.
Theorem 2: Under the conditions of Theorem 1, if $n \geq 11 m+31, f^{n}(z) P_{m}(f(q z+$ c)) $f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)$ share 1 IM , then conclusion of Theorem 1 still holds.
Theorem 3 : Let $f(z)$ and $g(z)$ be two transcendental entire functions with $\rho(f)=$ $\rho(g)=0, q$ and c are two non-zero complex constants and k denote the number of distinct zeros of $P_{m}(z)$. If $m>n+2 k+4, f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+$ c) $) g^{\prime}(z)$ share 1 CM , then one of the following results holds:
(1) $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where

$$
d=G C D(n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1)
$$

$a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$.
(2) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) \equiv 0$ where

$$
\begin{aligned}
R\left(w_{1}, w_{2}\right)= & w_{1}^{n+1}\left[\frac{a_{m} w_{1}^{m}}{n+m+1}+\frac{a_{m-1} w_{1}^{m-1}}{n+m}+\ldots+\frac{a_{0}}{n+1}\right] \\
& -w_{2}^{n+1}\left[\frac{a_{m} w_{2}^{m}}{n+m+1}+\frac{a_{m-1} w_{2}^{m-1}}{n+m}+\ldots+\frac{a_{0}}{n+1}\right]
\end{aligned}
$$

2. Preliminary Lemmas

The following lemma is a q-difference analogue of the logarithmic derivative lemma.
Lemma 2.1 (see [14]) : Let $f(z)$ be a meromorphic function of zero order, let c and q be two non-zero complex numbers, then

$$
m\left(r, \frac{f(q z+c)}{f(z)}\right)=S(r, f)
$$

on a set of logarithmic density 1 .
Lemma 2.2 (see [7]) : If $T: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is an increasing function such that,

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r)}{\log r}=0
$$

then, the set
$E:=\left\{r: T\left(C_{1} r\right) \geq C_{2} T(r)\right\}$ has the logarithmic density 0 for all $C_{1}>1$ and $C_{2}>1$.
Lemma 2.3 (see [12]) : Let $f(z)$ be a meromorphic function of finite order, let $c \neq 0$ be fixed. Then

$$
\begin{aligned}
\bar{N}(r, f(z+c)) & \leq \bar{N}(r, f(z))+S(r, f), \\
\bar{N}\left(r, \frac{1}{f(z+c)}\right) & \leq \bar{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \\
N(r, f(z+c)) & \leq N(r, f(z))+S(r, f), \\
N\left(r, \frac{1}{f(z+c)}\right) & \leq N\left(r, \frac{1}{f(z)}\right)+S(r, f) .
\end{aligned}
$$

Lemma 2.4 (see[18]) : Let $f(z)$ be a meromorphic function with $\rho(f)=0$, let c and q be two non-zero complex numbers, then

$$
\begin{aligned}
\bar{N}(r, f(q z+c)) & \leq \bar{N}(r, f(z))+S(r, f), \\
\bar{N}\left(r, \frac{1}{f(q z+c)}\right) & \leq \bar{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \\
N(r, f(q z+c)) & \leq N(r, f(z))+S(r, f), \\
N\left(r, \frac{1}{f(q z+c)}\right) & \leq N\left(r, \frac{1}{f(z)}\right)+S(r, f) .
\end{aligned}
$$

Lemma 2.5 (see[18]) : Let f be a non-constant meromorphic function of zero order, let c and q be two non-zero complex numbers, then

$$
T(r, f(q z+c)) \leq T(r, f(z))+S(r, f)
$$

on a set of logarithmic density 1 .
Lemma 2.6(see[18]). Let $f(z)$ be an entire function with $\rho(f)=0$, let c and q be two fixed non-zero complex constants, let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a non-zero polynomial, where $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$, are complex constants, then

$$
T(r, P(f(z)) f(q z+c))=T(r, P(f(z)) f(z))+S(r, f)
$$

Lemma 2.7 (see[17]) : Let F and G be two non-constant meromorphic functions. If F and G share 1 CM , then one of the following three cases holds:

$$
\begin{aligned}
& (i) \max \{T(r, F), T(r, G)\} \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right) \\
& \quad+N_{2}(r, G)+S(r, F)+S(r, G) \\
& (i i) F=G \\
& (i i i) F G \equiv 1
\end{aligned}
$$

where $N_{2}\left(r, \frac{1}{F}\right)$ denotes the counting function of zero of F, such that simple zero are counted once and multiple zeros are counted twice.
Lemma 2.8 (see[16]) : Let F and G be two non-constant meromorphic functions. Let F and G share 1 IM and

$$
H=\frac{F^{\prime \prime}}{F^{\prime}}-2 \frac{F^{\prime}}{F-1}-\frac{G^{\prime \prime}}{G^{\prime}}+2 \frac{G^{\prime}}{G-1}
$$

If $H \not \equiv 0$, then

$$
\begin{aligned}
& T(r, F)+T(r, G) \leq 2\left(N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right) \\
& +3\left(\bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)\right)+S(r, F)+S(r, G)
\end{aligned}
$$

3. Proof of Theorem 1

Let

$$
\begin{aligned}
& F(z)=f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z) \\
& G(z)=g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)
\end{aligned}
$$

Thus, F and G share 1 CM. Combining the first main theorem with Lemma 2.5, we obtain

$$
(n+2) T(r, f(z)) \leq T\left(r, f^{n}(z) f^{2}(q z+c)\right)+O(1)
$$

Hence, we obtain

$$
\begin{align*}
(n-m-2) T(r, f(z)) & \leq T(r, F(z))+S(r, f) \tag{1}\\
\text { Similarly, }(n-m-2) T(r, g(z)) & \leq T(r, G(z))+S(r, g) \tag{2}
\end{align*}
$$

From Lemma 2.5, we have

$$
\begin{gather*}
T(r, F) \leq(n+m+2) T(r, f)+S(r, f) \tag{3}\\
T(r, G) \leq(n+m+2) T(r, g)+S(r, g) \tag{4}
\end{gather*}
$$

By Second main theorem, Lemma 2.5 and (4), we obtain

$$
\begin{align*}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)+S(r, F) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, P_{m}(f(q z+c))\right)+\bar{N}\left(r, f^{\prime}\right) \\
& +\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{P_{m}(f(q z+c))}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f) \\
T(r, F) & \leq(7+m) T(r, f)+(n+m+2) T(r, g)+S(r, f)+S(r, g) \tag{5}
\end{align*}
$$

Hence (1) and (5) imply that

$$
\begin{equation*}
(n-2 m-9) T(r, f) \leq(n+m+2) T(r, g)+S(r, f)+S(r, g) \tag{6}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
(n-2 m-9) T(r, g) \leq(n+m+2) T(r, f)+S(r, f)+S(r, g) \tag{7}
\end{equation*}
$$

Equations (6) and (7) imply that $S(r, f)=S(r, g)$.
Together the definition of F with Lemma 2.5, we have

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right) & \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{P_{m}(f(q z+c))}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& \leq(4+m) T(r, f)+S(r, f) \tag{8}
\end{align*}
$$

Similarly,

$$
\begin{align*}
N_{2}\left(r, \frac{1}{G}\right) & \leq(4+m) T(r, g)+S(r, g) \\
N_{2}(r, F) & \leq(4+m) T(r, f)+S(r, f) \tag{9}\\
N_{2}(r, G) & \leq(4+m) T(r, g)+S(r, g)
\end{align*}
$$

Combining Lemma 2.7 with (8)-(9), we obtain

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 2 N_{2}\left(r, \frac{1}{F}\right)+2 N_{2}(r, F)+2 N_{2}\left(r, \frac{1}{G}\right)+2 N_{2}(r, G)+S(r, f)+S(r, g) \\
& \leq(16+4 m)(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{10}
\end{align*}
$$

Then, by (1) (2) and (10), we obtain

$$
\begin{equation*}
(n-5 m-18)[T(r, f)+T(r, g)] \leq S(r, f)+S(r, g) \tag{11}
\end{equation*}
$$

which is a contradiction, since $n \geq 5 m+19$.
By Lemma 2.7 , we have $F \equiv G$ or $F G \equiv 1$.
If $F \equiv G$,
that is,

$$
f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z) \equiv g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)
$$

Set $H(z)=f(z) / g(z)$
Suppose that $H(z)$ is not a constant. Then, we obtain

$$
\begin{align*}
\frac{f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)}{g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)} & =1 \\
H^{n}(z) P_{m}(H(q z+c)) H^{\prime}(z) & =1 \tag{12}
\end{align*}
$$

From Lemma 2.5 and (12), we get

$$
\begin{align*}
n T(r, H) & =T\left(r, \frac{1}{P_{m}(H(q z+c)) H^{\prime}(z)}\right) \\
& \leq T\left(r, P_{m}(H(q z+c)) H^{\prime}(z)\right)+S(r, H) \\
& \leq(m+2) T(r, H(z))+S(r, H) \tag{13}
\end{align*}
$$

Hence, $H(z)$ must be non-zero constant, since $n \geq 5 m+19$.
Set $H(z)=t$

By (12), we have $t^{d}=1$.
Thus $f(z)=t g(z)$, where $d=G C D(n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1)$, $a_{m-i} \neq 0$ for some $i=0,1,2, \ldots m+n$

If $F G \equiv 1$, that is,

$$
f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z) \cdot g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)=1
$$

Let $L(z)=f(z) \cdot g(z)$. Using similar method as above, we obtain that $L(z)$ must also be a non-zero constant. Thus we have $f g=t$, where $t^{d}=1, d=G C D(n+m+1, n+$ $m, \ldots, n+m+1-i, \ldots, n+1), a_{m-i} \neq 0$ for some $i=0,1,2, \ldots m+n$.

4. Proof of Theorem 2

Let

$$
\begin{aligned}
& F(z)=f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z) \\
& G(z)=g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)
\end{aligned}
$$

and H be defined as in Lemma 2.8. Using the same arguments as in Theorem 1, we prove that (1)-(9) holds.
By Lemma 2.5, we obtain

$$
\begin{aligned}
\bar{N}(r, F(z)) & \leq \bar{N}(r, f(z))+\bar{N}\left(r, P_{m}(f(q z+c))\right)+\bar{N}\left(r, f^{\prime}(z)\right)+S(r, f) \\
& \leq(m+2) T(r, f)+S(r, f),
\end{aligned}
$$

$$
\begin{align*}
\text { Similarly, } \bar{N}\left(r, \frac{1}{F(z)}\right) & \leq(m+2) T(r, f)+S(r, f), \\
\bar{N}(r, G(z)) & \leq(m+2) T(r, g)+S(r, g) \\
\bar{N}\left(r, \frac{1}{G(z)}\right) & \leq(m+2) T(r, g)+S(r, g) \tag{14}
\end{align*}
$$

Together Lemma 2.8 with (8), (9) and (14), we have

$$
\begin{equation*}
T(r, F)+T(r, G) \leq(10 m+28)(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{15}
\end{equation*}
$$

By (1), (2) and (15)

$$
\begin{equation*}
(n-m-2)(T(r, f)+T(r, g)) \leq(10 m+28)(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{16}
\end{equation*}
$$

which is impossible, since $n \geq 11 m+31$. Hence, we have $H \equiv 0$.
By integrating H twice, we have

$$
\begin{equation*}
F=\frac{(b+1) G+(a-b-1)}{b G+(a-b)} \tag{17}
\end{equation*}
$$

which yields $T(r, F)=T(r, G)+O(1)$.
From (1)-(4), we obtain

$$
\begin{align*}
& (n-m-2) T(r, f) \leq(n+m+2) T(r, g)+S(r, f)+S(r, g) \tag{18}\\
& (n-m-2) T(r, g) \leq(n+m+2) T(r, f)+S(r, f)+S(r, g) \tag{19}
\end{align*}
$$

Next, we will prove that $F \equiv G$ or $F G \equiv 1$
Case $1:(b \neq 0,-1)$. If $a-b-1 \neq 0$, by (17), we obtain

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{G-(a-b-1) /(b+1)}\right) \tag{20}
\end{equation*}
$$

Combining the Nevanlinna second main theorem with Lemma 2.5, (1), (4) and (19), we obtain

$$
\begin{align*}
(n-m-2) T(r, g) & \leq T(r, G)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G-(a-b-1) /(b+1)}\right)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{P_{m}(g(q z+c))}\right)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right) \\
& +\bar{N}(r, g)+\bar{N}\left(r, P_{m}(g(q z+c))\right)+\bar{N}\left(r, g^{\prime}\right) \\
& +\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{P_{m}(f(q z+c))}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, g) \\
& \leq(7+m) T(r, g)+(m+4) T(r, f)+S(r, g) \tag{21}
\end{align*}
$$

By simple calculation, we get contradiction, since $n \geq 11 m+31$. Hence we obtain, $a-b-1=0$, so

$$
\begin{equation*}
F=\frac{(b+1) G}{b G+1} \tag{22}
\end{equation*}
$$

Using the similar method as above, we obtain

$$
\begin{aligned}
(n-m-2) T(r, g) & \leq T(r, G)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G+1 / b}\right)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, g) \\
& \leq(7+m) T(r, g)+(m+4) T(r, f)+S(r, g)
\end{aligned}
$$

which is impossible.
Case 2: If $b=-1$ and $a=-1$, then $F G \equiv 1$ follows trivially. Therefore, consider $b=-1$ and $a \neq-1$.

By (17), we have

$$
\begin{equation*}
F=\frac{a}{a+1-G} \tag{23}
\end{equation*}
$$

Similarly, as above we get contradiction.
Case 3. If $b=0, a=1$, then $F \equiv G$ follows trivially. Therefore, consider $b=0$ and $a \neq 1$. By (17), we have

$$
\begin{equation*}
F=\frac{G+a-1}{a} \tag{24}
\end{equation*}
$$

Similarly, as above we get contradiction.

5. Proof of Theorem 3

Let $f(z)$ and $g(z)$ be two transcendental entire functions. Since $f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)$ share 1 CM , we have

$$
\begin{equation*}
\frac{f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)-1}{g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)-1}=e^{l(z)} \tag{25}
\end{equation*}
$$

where $l(z)$ is an entire function, by $\rho(f)=0$ and $\rho(g)=0$, we have $e^{l(z)} \equiv \eta$ a constant. Rewriting (25),

$$
\begin{equation*}
\eta g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)=f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)+\eta-1 \tag{26}
\end{equation*}
$$

If $\eta \neq 1$, by the first main theorem, the second main theorem and Lemma 2.5, we have

$$
\begin{align*}
T\left(r, f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)\right) & \leq \bar{N}\left(r, f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)\right) \\
& +\bar{N}\left(r, \frac{1}{\left.f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)\right)}\right) \\
& +\bar{N}\left(r, \frac{1}{\left.f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)\right)-1}\right) \\
& \leq(n+k+3) T(r, f)+\bar{N}\left(r, \frac{1}{\left.g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)\right)}\right) \\
& +S(r, f)+S(r, g) \\
& \leq(n+k+3) T(r, f)+(n+k+3) T(r, g)+S(r, f)+S(r, g) \tag{27}
\end{align*}
$$

By Lemma 2.6 and (27), we have

$$
\begin{align*}
(n+m+2) T(r, f) & =T\left(r, f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)\right) \\
& \leq(n+k+3) T(r, f)+(n+k+3) T(r, g)+S(r, f)+S(r, g) \\
(m-k-1) T(r, f) & \leq(n+k+3) T(r, g)+S(r, f)+S(r, g) \tag{28}\\
\text { Similarly, }(m-k-1) T(r, g) & \leq(n+k+3) T(r, f)+S(r, f)+S(r, g) \tag{29}
\end{align*}
$$

Equations (28) and (29) imply that

$$
\begin{equation*}
(m-2 k-4-n)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g) \tag{30}
\end{equation*}
$$

which is impossible, since $m>n+2 k+4$.
Hence we have $\eta=1$. Rewriting (25),

$$
\begin{equation*}
g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)=f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z) \tag{31}
\end{equation*}
$$

Set $h(z)=f(z) / g(z)$
Case 1: Suppose that $h(z)$ is a constant.
Integrating (31), we get

$$
\begin{align*}
& f^{n+1}\left[\frac{a_{m} f^{m}(q z+c)}{m+n+1}+\frac{a_{m-1} f^{m-1}(q z+c)}{m+n}+\ldots+\frac{a_{0}}{n+1}\right] \\
= & g^{n+1}\left[\frac{a_{m} g^{m}(q z+c)}{m+n+1}+\frac{a_{m-1} g^{m-1}(q z+c)}{m+n}+\ldots+\frac{a_{0}}{n+1}\right] \tag{32}
\end{align*}
$$

By substituting $f=g h$ in (32), we obtain

$$
\begin{aligned}
& g^{n+1} h^{n+1}\left[\frac{a_{m} g^{m}(q z+c) h^{m}}{m+n+1}+\frac{a_{m-1} g^{m-1}(q z+c) h^{m-1}}{m+n}+\ldots+\frac{a_{0}}{n+1}\right] \\
& =g^{n+1}\left[\frac{a_{m} g^{m}(q z+c)}{m+n+1}+\frac{a_{m-1} g^{m-1}(q z+c)}{m+n}+\ldots+\frac{a_{0}}{n+1}\right] \\
& \Rightarrow g^{n+1}\left[\frac{a_{m} g^{m}(q z+c)}{m+n+1}\left(h^{m+n+1}-1\right)+\frac{a_{m-1} g^{m-1}(q z+c)}{m+n+1}\left(h^{m+n}-1\right)\right. \\
& \left.+\ldots+\frac{a_{0}}{n+1}\left(h^{n+1}-1\right)\right] \equiv 0
\end{aligned}
$$

Since g is a transcendental entire function, we have $g^{n+1}(z) \neq 0$. Hence, we obtain

$$
\begin{equation*}
\frac{a_{m} g^{m}(q z+c)}{m+n+1}\left(h^{m+n+1}-1\right)+\frac{a_{m-1} g^{m-1}(q z+c)}{m+n+1}\left(h^{m+n}-1\right)+\ldots+\frac{a_{0}}{n+1}\left(h^{n+1}-1\right) \equiv 0 \tag{33}
\end{equation*}
$$

Equation (33) implies that $h^{d}=1$, where $d=G C D(n+m+1, n+m, \ldots, n+m+1-$ $i, \ldots, n+1), a_{m-i} \neq 0$, for some $i=0,1, \ldots m$.
Thus $f=t g$ for a constant t, such that $t^{d}=1$, where $d=G C D(n+m+1, n+m, \ldots, n+$ $m+1-i, \ldots, n+1), a_{m-i} \neq 0$, for some $i=0,1, \ldots m$.
Case 2: Suppose that $h(z)$ is not a constant, then by (33) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
\begin{align*}
R\left(w_{1}, w_{2}\right) & =w_{1}^{n+1}\left[\frac{a_{m} w_{1}^{m}}{n+m+1}+\frac{a_{m-1} w_{1}^{m-1}}{n+m}+\ldots+\frac{a_{0}}{n+1}\right] \\
& -w_{2}^{n+1}\left[\frac{a_{m} w_{2}^{m}}{n+m+1}+\frac{a_{m-1} w_{2}^{m-1}}{n+m}+\ldots+\frac{a_{0}}{n+1}\right] \tag{34}
\end{align*}
$$

References

[1] Hayman W. K., Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, (1964).
[2] Yang C. C. and Yi H. X., Uniqueness of Meromorphic Functions, Kluwer, Dordrecht, The Netherlands, (2003).
[3] Chen Z. -X., and Shon K. H., Value distribution of meromorphic solutions of certain difference Painlevé equations, J. Math. Anal. Appl. 364(2) (2010), 556-566.
[4] Chiang Y. -M. and Feng S. -J., On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16(1) (2008), 105-129.
[5] Halburd R. G. and Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314(2) (2006), 477-487.
[6] Halburd R. G. and Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31(2) (2006), 463-478.
[7] Halburd R. G. and Korhonen R. J., Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. Lond. Math. Soc., (3) 94(2) (2007), 443-474.
[8] Liu K. and Yang L. -Z., Value distribution of the difference operator, Arch. Math. (Basel), 92(3) (2009), 270-278.
[9] Yang L. -Z. and Zhang J. -L., Non-existence of meromorphic solutions of a Fermat type functional equation, Aequationes Math., 76(1-2) (2008), 140-150.
[10] Zhang J., Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl., 367(2) (2010), 401-408.
[11] Zhang J. and Korhonen R., On the Nevanlinna characteristic of $f(q z)$ and its applications, J. Math. Anal. Appl., 369(2) (2010), 537-544.
[12] Heittokangas J. et al., Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl., 355(1) (2009), 352-363.
[13] Liu K., Liu X. and Cao T., Value distributions and uniqueness of difference polynomials, Adv. Difference Equ., (2011), Art. ID 234215, 12 pp.
[14] Liu K. and Qi X. -G., Meromorphic solutions of q-shift difference equations, Ann. Polon. Math., 101(3) (2011), 215-225.
[15] Xu H. Y., Liu K. and Cao T. B., Uniqueness and value distribution for q-shifts of meromorphic functions, Math. Commun., 20(1) (2015), 97-112.
[16] Xu J. and Yi H., Uniqueness of entire functions and differential polynomials, Bull. Korean Math. Soc., 44(4) (2007), 623-629.
[17]Yang C. -C. and Hua X., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(2) (1997), 395-406.
[18] Liu Y. et al., Value sharing results for q-shifts difference polynomials, Discrete Dyn. Nat. Soc., (2013), Art. ID 152069, 6 pp.

