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Abstract
In this work, we have formulated a deterministic mathematical model of vector-host
transmission dynamics of fowl pox in poultry, to investigate the impact of media
coverage in the reduction and control of fowl pox in poultry. The compartmental
model resulted in an ordinary differential equation that includes the effect of media
coverage on reporting the numberof infections. Methods from dynamical system
theory were employed in analysing the equilibrium stability of the model at both
disease free equilibrium and endemic equilibrium. Appropriate conditions for the
local asymptotic stability of both equilibrium points have been established. A
threshold parameter R0 (the basic reproductive ratio) was also derived analytically
to discuss the local stability of the disease free equilibrium.
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1. Introduction

Infectious diseases are responsible for a quarter of all deaths in the world annually, the

vast majority occurring in low and middle income countries [1]. Infectious diseases

account for a vast majority of loss recorded in poultry farming. When an infectious

disease appears and spreads in a region, farmers will do everything possible to control

and prevent the disease spreading. One of the immediate measures to take is to educate

people on the preventive knowledge of the disease through media coverage. It is a

common sense that the more preventive knowledge the population has the better to

prevent the spreading of the disease. Media coverage has great influence not only the

farmer’s behaviours but also on the formation and implementation of public intervention

and control policies[9]. Media report plays a key role in the perception, management

and even creation of crises [10].

The benefit of publicly reporting disease outbreaks seems obvious, and public health

officials in the United States have a policy of regularly communicating with the news

media about such incidents. But unfortunately, not all world governments choose to

communicate effectively. The role of media coverage on disease outbreaks is thus crucial

and should be given prominence in the study of infectious disease dynamics. Information

dissemination influences the farmer’s risk perception and shapes evolution of epidemics.

There have been mathematical modelling studies to investigate the impact of media

coverage and psychology to the spread and control of infectious diseases in a given

population or region.

[8] Develops a model to explore the impact of media coverage on the control of spreading

of emerging or re-emerging infectious diseases in a given population. The model resulted

in two equilibria:- a disease free equilibrium and a uniqueendemic equilibrium. Stability

analysis of the model shows that the disease freeequilibrium is globally asymptotically

stable if the reproduction number R0i s lessthan unity, and the endemic equilibrium

is globally asymptotically stable when itexists. Though the media coverage itself is

not a determined fact to eradicate theinfection of the diseases, the analysis of model

indicates to certain extent that themore media coverage/alert in a given population, the

less number of individualswill be infected. Therefore, the media coverage is critical for

educating people inunderstanding the possibility of being infected by the disease.

[11] Formulates a deterministic transmission and vaccination model to investigate the
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effects of media coverage on the transmission dynamics of influenza. The resulted com-

partmental model includes the effect of media coverage on reporting the number of

infections as well as the number of individuals successfully vaccinated. A threshold

parameter (the basic reproductive ratio) was analytically derived and used to discuss

the local stability of the disease-free steady state. The impact of costs that can be in-

curred, which include vaccination, education, implementation and campaigns on media

coverage, were also investigated using optimal control theory. A simplified version of

the model with pulse vaccination showed that the media can trigger a vaccinating panic

if the vaccine is imperfect and simplified messages result in the vaccinated mixing with

the infectives without regard to disease risk.

[9] Used a compartmental model to illustrate a possible mechanism for multiple out-

breaks oreven sustained periodic oscillations of emerging infectious diseases due to the

psychologicalimpact of the reported numbers of infectious and hospitalized individuals.

This impact leadsto the change of avoidance and contact patterns at both individual

and community levels, andincorporating this impact using a simple nonlinear incidence

function into the model showed qualitative differences of the transmission dynamics.

Cruz Vargas de Leon,[13] in their work dealt with the global stability properties of two

host-vector disease models using the Poicar e-Bendixson Theorem and Second Method

of Lyapunov. He constructed a Lyapunov function for each Vector-Host model and

proved that the local and global stability are completelydetermined by the threshold

parameter, R0. He established that, if R0 < 1, the disease-freeequilibrium point is

globally asymptotically stable. Also if R0 > 1, then, the uniqueendemic equilibrium

point exists and is globally asymptotically stable inthe interior of the feasible region.

The study of the dynamics infectious diseases using mathematical models has proven

to be a valuable tool to understand epidemiological patterns and processes, provided

that the models are as close as possible to real life situations and based on biological

knowledge. In this work, we shall formulate the mathematical model that incorporates

media coverage which will enable us to investigate the control strategies and understand

the complex dynamics of vector-host interactions that produce fowl pox infections in

poultry.
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2. Model Framework

2.1 Assumptions

1. The infection is transmitted by both the vector and the infected birds.

2. Birds that recover from one can become susceptible to the other strain.

3. Media report has positive impact on the transmission rate of the infection.

4. Mosquitoes are the primary reservoir and spreaders of the infection in poultry

range[12].

5. The vector has logistic growth.

2.2 Parameters/Symbols

S = Susceptible birds
I = Infected birds
V = Vector (Mosquito)
Λ = recruitment term of the susceptible birds
α1 = infection rate of fowl pox in poultry
µ = the rate at which the infected birds recover and become

susceptible
ϕ = natural death rate (it is the same for each sub-population)
γ = death due to infection
δ = death rate of the vector due to extra effort as a response to

media coverage
α2I
m1+I = the measure of the effect of reduction in transmission rate as

a result of media coverage
α3V
m1+V = the measure of the effect of reduction in transmission rate due to

extra effort on the vector as a response of media coverage
m1 = the halfsaturation constant which reflects the impact of media

coverage on thecontact- transmission rate
ρ = growth rate of the vector
K = the carrying capacity for the vector.

Our model describes the transmission dynamics of fowl pox infection based on two

strains. Here we assume that birds which recover from one strain can become suscepti-

ble to the other strain. The susceptible population is increased by recruitment of birds

either by birth or immigration and the recovered bird that become susceptible. This
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population is reduced by infection and by natural death or emigration. The infected

population is increased by infection of susceptible birds either by infected bird or the

vector (mosquito). This population is diminished by natural death, death due to infec-

tion, and those that recover and become susceptible. The vector population assumes a

logistic growth with K as the carrying capacity and ρ as the growth rate of the vector.

This population is decreased by emigration or natural death and death due to extra

effort as a response from media coverage. Media coverage is introduced into the system

via saturated incidence functions H(I) = α2I
m1+I and g(V ) = α2V

m1+V .

2.3 Model Equations

The transmission model with media coverage is given by the following deterministic

system of non linear ordinary differential equations:

dS
dt = A−

(
α1 − α2I

m1+I

)
SI −

(
− α3V
m1+V

)
SV + µI − ϕS

dI
dt =

(
α1 − α2I

m1+I

)
SI +

(
α1 − α3V

m1+V

)
SV − µI − ϕI − γI

dV
dt = ρV

(
1− V

K

)
− ϕV − δV

(3.1)

3. Stability of the Equilibrium States

The disease free equilibrium is given by

E0 = (S∗, I∗, V ∗) =
[

Λρ(ρm1 + P )
(α1P + ϕρ)(ρm1 + P )− α3P 2

, 0,
K

ρ
(ρ− ϕ− δ)

]
where P = K(p− ϕ− δ).

The endemic equilibrium of the system is given by E1 = (S∗, I∗, V ∗). It satisfies S∗ >

0, I∗ > 0, V ∗ > 0 and

S∗ =
(µ+ ϕ+ γ)(ρm1 +K(ρ− ϕ− δ)

(h(I∗) + α1)(m1ρ+K(ρ− ϕ− δ))− α3K(ρ− ϕ− δ)

V ∗ =
K

ρ
(ρ− ϕ− δ) (3.2)

where h(I∗) = α1(m1+I∗)−α2I∗

m1+I∗ .

Substituting the above into the system at equilibrium yields the expression for I∗ after



108 UDOFIA EKERE SUNDAY, UDOH KENNETH JUMBO & INYAMA SIMEON CHIOMA

some rearrangement. That is,

(ϕ+ γ)(α1 − α2 + h)I∗2 + [(ϕ+ γ)(α1m1 +m1h)− α1 + α2 − h− ϕ(µ+ ϕ+ γ)]

I∗ − Λ(α1m1 +m1h)− ϕm1(µ+ ϕ+ γ)
(3.3)

where h = α1m1ρ+(α1−α3)K(ρ−ϕ−δ)
m1ρ+K(ρ−ϕ−δ) , where I∗ is the positive solution of the quadratic

equation (3.3).

For illustration, suppose, there is no effect of media report on the number of infected

birds. This implies that δ = α2 = α3 = 0.

Then the endemic equilibrium satisfies

Λ− α1SI − α1SV + µI − ϕS = 0

α1SI + α1SV − µI − ϕI − γI = 0

ρV

(
1− V

K

)
− ϕV = 0.

From here we have that

V ∗ =
K

ρ
(ρ− ϕ)

S∗ =
(µ+ ϕ+ γ)I∗

α1I∗ + Kα1
ρ (ρ− ϕ)

where I∗ is the positive solution of the quadratic equation.

α1(ϕ+ γ)I∗2 −
[
α2Λ + µρ− (ϕ+ γ)

(
Kα1

ρ
(ρ− ϕ)− ϕ

)]
I∗ − KΛα1

ρ
(ρ− ϕ) = 0.

That is,

I =

α1Λ + µρ− (ϕ+ γ)
(
Kα1
ρ (ρ− ϕ)− ϕ

)
+√[

α1Λ + µρ− (ϕ+ γ)
(
Kα1
ρ (ρ− ϕ)− ϕ

)]2
+ 4α1(ϕ+ γ)

2α1(ϕ+ γ)
.

3.1 Analysis of the Disease Free Equilibrium

When modelling infectious diseases, our aim is to find out whether or not the infection

will invade the community. We therefore carry out equilibrium and stability analysis to

have a better understanding of the dynamics of the disease.
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To determine the behaviour of the population near the equilibrium solution, we need

to compute the linearization of the system, which is obtained as the Jacobian matrix of

the system. Here we seek to establish the local stability of the disease free equilibrium.

From system of the equation in (3.1), the Jacobian matrix is follows:

J =
−ϕ−

(
α1 − α2I∗

m1+I∗

)
I∗ −

(
α1 − α3V ∗

m1V ∗

)
V ∗ µ α∗S −

(2m1+V ∗)α2S∗V ∗

(m1+V ∗)2(
α1 − α2I∗

m1+I∗

)
I∗ +

(
α1 − α3V ∗

m1+V ∗

)
V ∗ −(µ+ vp+ γ) α1S

∗ − (2m1+V ∗)α3S∗V ∗

(m1+V ∗)2

0 0 ρ− 2ρV ∗

K − (ϕ+ δ)


The Jacobian matrix of the disease equilibrium

E0 =
[

Λρ(ρm1 + P )
(α1P + ϕρ)(ρm1 + P )− α3P 2

, 0,
K

ρ
(ρ− ϕ− δ)

]
is given thus

J0 =


−(ϕ+ T ) µ α2S

∗ − (2m1+V ∗)α3S∗V ∗

(m1+V ∗)2

T −(µ+ ϕ+ γ) α1S
∗ − (2m1+V ∗)α3S∗V ∗

(m1+V ∗)2

0 0 −(ρ− ϕ− δ)


where

T =
α1P (m1ρ+ P )− α3P

2

ρ(m1ρ+ P )
, S∗ =

Λρ(ρm1 + P )
(α1P + ϕρ)(ρm1 + P )− α3P 2

, V ∗ =
K

ρ
(ρ−ϕ−δ).

The eigenvalues of the Jacobian matrix J0 are found to be ξ1 = (−(ρ− ϕ− δ).

ξ2 = −1
2

(µ+ 2ϕ+ γ + T ) +
√

(µ+ 2ϕ+ γ + T )2 − 4[(µ+ ϕ+ γ)(ϕ+ T )− µT ]

ξ= −
1
2

(µ+ 2ϕ+ γ + T )−
√

(µ+ ϕ+ γ + ϕ+ T )2 − 4[(µ+ ϕ+ γ)(ϕ+ T )− µT ]

ξ2 has negative real part if (µ+ ϕ+ γ)(ϕ+ T ) < µT .

If all of the roots of the characteristic equation obtained from the Jacobian of the lin-

earization of a system of ordinary differential equations about equilibrium arenegative

or have negative real parts then that equilibrium is said to be locallyasymptotically
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stable. That is, small perturbations from the equilibrium die away andthe system re-

turns to the equilibrium.Hence this system is locally asymptotically stableat this disease

free equilibrium,since all the eigenvalues of the system at disease free equilibrium has

negative real parts. Therefore any small infection introduced into the poultry will die

out and the system returns to equilibrium.

3.2 Analysis of the Endemic Equilibrium

At the endemic equilibrium point, the infection has spread everywhere in the poultry.

Hence there is no susceptible population, that is, S = 0.

From system of the equation in (3.1), the Jacobian matrix is follows: J =
−ϕ−

(
α1 − α2I∗

m1+I∗

)
I∗ −

(
α1 − α3V ∗

m1V ∗

)
V ∗ µ α∗S −

(2m1+V ∗)α3S∗V ∗

(m1+V ∗)2(
α1 − α2I∗

m1+I∗

)
I∗ +

(
α1 − α3V ∗

m1+V ∗

)
V ∗ −(µ+ vp+ γ) α1S

∗ − (2m1+V ∗)α3S∗V ∗

(m1+V ∗)2

0 0 ρ− 2ρV ∗

K − (ϕ+ δ)


At the endemic equilibrium Ee = (S∗, I∗, V ∗) =

(
0, Λ

µ ,
K
ρ (p− ϕ− δ)

)
(the Jacobian

matrix is as follows:

JE =


−ϕ− δ1 − δ2 µ 0

δ1 + δ2 −(µ+ ϕ+ γ) 0

0 0 −(ρ− ϕ− δ)


where the endemic equilibrium point is

Ee = (S∗, I∗, V ∗) =
(

0,
Λ
µ
,
K

ρ
(ρ− ϕ− δ)

)
.

The characteristic equation at the endemic equilibrium is

{−(ρ− ϕ− δ)− λ}{λ2 + (δ1 + β + δ2)λ+ (β − µ)(δ1 + δ2)} = 0

where

δ1 =
α1Λµm1 + (α1 − α2)Λ2

µ(µm1 + Λ)
δ2 =

α1m1ρ+ (α1 − α2)K2(ρ− ϕ− δ)2

m1ρ2 +Kρ(ρ− ϕ− δ)
, β = µ+ δ+γ.
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The eigenvalues of the endemic equilibrium is obtained as follows

λ1 = −(ρ− ϕ− δ),

λ2 + (δ1 + β + δ2)λ+ (δ + γ)(δ1 + δ2) = 0

λ =
−(δ1 + β + δ2)±

√
(δ1 + β + δ2)2 − 4(δ + γ)(δ1 + δ2)

2

λ2 =
−(δ1 + β + δ2)−

√
(δ1 + β + δ2)2 − 4(δ + γ)(δ1 + δ2)

2

λ3 =
−(δ1 + β + δ2) +

√
(δ1 + β + δ2)2 − 4(δ + γ)(δ1 + δ2)

2

λ3 has negative real part ifδ1 + δ2 < 0.

Hence this system is locally asymptotically stableat the endemic equilibrium, since all

the eigenvalues of the system at endemic equilibrium has negative real parts.

4. Analysis of the Stability Using Basic Reproductive Ratio

The concept of the basic reproductive ratio R0 in epidemiology is fundamental as it

serves as a threshold parameter that governs the spread of infectious disease in a pop-

ulation [2]. The basic reproductive ratio R0 is defined as the expected number of sec-

ondary infections caused by an infective individual upon entering a totally susceptible

population [3], [4], and [5]. The basic reproductive ratio is also defined as the spectral

radius, that is, the dominant eigenvalue of the next-generation matrix [3]. This quantity

is not only important in describing the infectious power but also, but can also supply

information for controlling the spread of infection [6].

If R0 < 1, the each infected individual in its entire period of infectivity will produce

less than one infected individual on average. The disease free equilibrium is locally

asymptotically stable. Thus the disease will be wiped out of the population. If R0 >

1, then there is a cause for alarm as this implies that each infected individual in its

entire infective period having contact with susceptible individual will produce more one

infected individual on the average, which then will lead to the disease invading the

susceptible population[2].

Construction of Basic Reproductive Number

The vi,j entry of the transition matrix V is the rate individuals in stage j progress to

Stage i. The fi,j entry of the infection matrix F is the number of new infections at stage
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j caused by contacts with diseased individuals in stage i. The gi,j entry of the next

generation matrix G = FV −1 is the expected number ofsecondary infections produced

in compartment i by an index case initially in compartment j.

• G has a positive real eigenvalue R0 which is at least as large in modulus as all other

eigen- Values of G. This eigen value is the logical candidate for the basic reproduc-

tion number [7]. The linearity of the disease free equilibrium is governed by the basic

reproductive ratio R0. Using the next-generation matrix method, we have

F =


α1Λρ(ρm1+P )

(α1P+ϕρ)(ρm1+P )−α3P 2 0 Λ(α1P (ρm1+P )−α3P 2)
(α1P+ϕρ)(ρm1+P )−α3P 2

0 0 0

0 0 0



V =


µ+ ϕ+ γ 0 0

α1S
∗ TV ∗ TS∗

0 0 ϕ+ δ − ρ
(
1− V ∗

K

)



V −1 =



1
µ+ϕ+γ

−(α1S∗−µ)
(TV ∗+ϕ)(µ+ϕ+γ) 0

0 1
TV ∗+ϕ 0

0 −TS∗
(TV ∗+ϕ)(ϕ+δ−ρ(1−V ∗

K ))
1

ϕ+δ−ρ(1−V ∗
K )



G =


α1S∗

µ+ϕ+γ

−
(
ϕ+ δ − ρ

(
1− V ∗

K

))
a1S

∗(α1S
∗ − µ)

−(µ+ ϕ+ γ)(TS∗)2

(TV ∗+ϕ)(µ+ϕ+γ)(ϕ+δ−ρ(1−V ∗
K ))

−TS∗
(ϕ+δ−ρ(1−V ∗

K ))

0 0 0

0 0 0


The basic reproductive ratio is the spectral radius of G, which

R0 =
α1Λρ(ρm1 + P )

(µ+ ϕ+ γ)(α1P + ϕρ)(ρm1 + P )− α3P 2
.

And represent the number of secondary infection that each infectious bird is expected to

produce, while its remains infectious when introduce the population of entirely suscep-

tible birds. If R0 < 1, that is the average number of secondary infection is less than one.
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Therefore within a short while the infection will die out from the population. Hence at

R0 < 1, the disease free equilibrium is locally asymptotically stable.

5. Summary and Conclusion

It is true that provision of information influences individual risk perception and shapes

the evolution of epidemics. Because of its sporadic nature andability to easily be carried

from flock to flock, it is important that farmers remain vigilant in watching for its re-

emergence.

In this work, we have formulated a deterministic mathematical model of vector-host

transmission dynamics of fowl pox in poultry to investigate the impact of media cov-

erage in the reduction and control of fowl pox in poultry. The population is divided

into susceptible birds (S), infected birds (I) and the vector population (V ). The com-

partmental model resulted in an ordinary differential equation that includes the effect

of media coverage on reporting the numberof infections.

The method of dynamical system theory is employed in analysing the equilibrium stabil-

ity of the model at both disease free equilibrium and endemic equilibrium. Appropriate

conditions for the local asymptotic stability of both equilibrium points have been es-

tablished. A threshold parameter R0 (the basic reproductive ratio) was also derived

analytically to discuss the local stability of the disease free equilibrium.
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