International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 115-133

ON PERMANENTAL POLYNOMIAL IN GRAPHS

J. DEVARAJ ${ }^{1}$ AND S. SOWMYA ${ }^{2}$
${ }^{1}$ Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India
E-mail: devaraj_jacob@yahoo.co.in,
${ }^{2}$ Research Scholar, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India
E-mail: sowras@gmail.com

Abstract

Let G be a simple graph of order n with adjacency matrix $A(G)$ and $P(G, x)$ the permanental polynomial of G. Let I_{n} denote the $n \times n$ identity matrix. Then $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ is called the permanental polynomials of the graph G. In this paper, we discussed the permanental polynomial of the graph such as path, cycle, star, triangular book graph, bistar graph and the new root graph.

1. Introduction

By a simple graph $G=(V(G), E(G))$ we mean a finite undirected graph with the vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and the edge set $E(G)=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$, if not specified [5]. The adjacency matrix of a graph G, here denoted by $A(G)=\left(a_{i j}\right)_{n \times n}$, is a matrix of order n whose entries $i j=1$ if vertex v_{i} is adjacent to vertex v_{j} and $a_{i j}=0$ otherwise.

Key Words : Permanental polynomial, Path, Cycle, Triangular book graph.
© http: //www.ascent-journals.com

Definition 1.1 [6] : Let S_{n} be the set of all permutation of $(1,2, \cdots, n)$. The permanent of the matrix A is denoted by $\operatorname{per}(A)$ is defined as $\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}$.
Definition 1.2 [4]: Let G be a graph of order n and let $A(G)$ be the adjacency matrix of G. Let I_{n} denote the $n \times n$ identity matrix. The permanental polynomial of G, denoted by $P(G, x)$ is defined as $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$.
Theorem 1.3: The permanental polynomial of the path graph P_{n} is given by $P(G, x)=$ $\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k} x^{n-2 k}$ for $n \geq 2$.
Proof: Let $G=P_{n}$ be the path graph with n vertices and $n-1$ edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph P_{n}.

$$
\begin{aligned}
& P\left(P_{n}, x\right)=\operatorname{per}\left(x I_{n}+A\left(P_{n}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 0 & 0 & 0 & \cdots & 0 \\
0 & x & 0 & 0 & \cdots & 0 \\
0 & 0 & x & 0 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & x
\end{array}\right)+\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & 10
\end{array}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 1 & 0 & 0 & \cdots & 0 \\
1 & x & 1 & 0 & \cdots & 0 \\
0 & 1 & x & 1 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & 1 x
\end{array}\right)\right) \\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k} x^{n-2 k} \text {. }
\end{aligned}
$$

That is,

$$
P\left(P_{n}, x\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k} x^{n-2 k} .
$$

This is true for all $n \geq 2$.
Illustration 1.4 :

Figure 1: P_{4}

Let

$$
A\left(P_{4}\right)=\begin{gathered}
\\
1 \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
P\left(P_{x}, x\right) & =\operatorname{per}\left(x I_{4}+A\left(P_{4}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{llll}
x & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & x
\end{array}\right)+\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{llll}
x & 1 & 0 & 0 \\
1 & x & 1 & 0 \\
0 & 1 & x & 1 \\
0 & 0 & 1 & x
\end{array}\right) \\
& =\operatorname{xper}\left(\begin{array}{lll}
x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right)+\operatorname{per}\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right) \\
& =x\left(x^{3}+0+0+0+x+x\right)+\left(x^{2}+0+0+1\right) \\
& =x\left(x^{3}+2 x\right)+x^{2}+1 \\
& =x^{4}+3 x^{2}+1
\end{aligned}
$$

Hence $P\left(P_{4}, x\right)=x^{4}+3 x^{2}+1$.
Note 1.5 : The first few permanental polynomial of the path graph P_{n} is given below:

1. $P\left(P_{2}, x\right)=x^{2}+1$
2. $P\left(P_{3}, x\right)=x^{3}+2 x$
3. $P\left(P_{4}, x\right)=x^{4}+3 x^{2}+1$
4. $P\left(P_{5}, x\right)=x^{5}+4 x^{3}+3 x$
5. $P\left(P_{6}, x\right)=x^{6}+5 x^{4}+6 x^{2}+1$.

Theorem 1.6: The permanental polynomial of the cycle graph C_{n} is given by

$$
P(G, x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{k}\binom{n-k-1}{k-1} x^{n-2 k}+2 \text { for } n \geq 3 .
$$

Proof : Let $G=C_{n}$ be the cycle graph with n vertices and n edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph C_{n}.

$$
\begin{aligned}
P\left(C_{n}, x\right) & =\operatorname{per}\left(x I_{n}+A\left(C_{n}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 0 & 0 & 0 & \cdots & 0 \\
0 & x & 0 & 0 & \cdots & 0 \\
0 & 0 & x & 0 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & x
\end{array}\right)+\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 1 \\
1 & 0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 \\
& & & & \vdots & \\
1 & 0 & 0 & 0 & \cdots & 10
\end{array}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{ccccccc}
x & 1 & 0 & 0 & \cdots & 1 \\
1 & x & 1 & 0 & \cdots & 0 \\
0 & 1 & x & 1 & \cdots & 0 \\
1 & 0 & 0 & 0 & \cdots & 1 x
\end{array}\right)\right) \\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{k}\binom{n-k-1}{k-1} x^{n-2 k}+2 .
\end{aligned}
$$

That is,

$$
P\left(C_{n}, x\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{k}\binom{n-k-1}{k-1} x^{n-2 k}+2 .
$$

This is true for all $n \geq 3$.

Illustration 1.7 :

Figure 2: C_{4}

$$
A\left(C_{4}\right)=\begin{gathered}
\\
1 \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
P\left(C_{x}, x\right) & =\operatorname{per}\left(x I_{4}+A\left(C_{4}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{llll}
x & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & x
\end{array}\right)+\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{llll}
x & 1 & 0 & 1 \\
1 & x & 1 & 0 \\
0 & 1 & x & 1 \\
1 & 0 & 1 & x
\end{array}\right) \\
& =x \operatorname{per}\left(\begin{array}{lll}
x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right)+\operatorname{per}\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right)+\operatorname{per}\left(\begin{array}{lll}
1 & 0 & 1 \\
x & 1 & 0 \\
1 & x & 1
\end{array}\right) \\
& =x\left(x^{3}+0+0+x+x\right)+\left(x^{2}+0+1+1\right)+\left(1+x^{2}+1+0\right) \\
& =x\left(x^{3}+2 x\right)+\left(x^{2}+2\right)+\left(x^{2}+2\right) \\
& =x^{4}+4 x^{2}+4 .
\end{aligned}
$$

Hence $P\left(C_{4}, x\right)=x^{4}+4 x^{2}+1$.
Note 1.8: The first few permanental polynomial of the path graph C_{n} is given below:

1. $P\left(C_{3}, x\right)=x^{3}+3 x+2$
2. $P\left(C_{4}, x\right)=x^{4}+4 x^{2}+4$
3. $P\left(C_{5}, x\right)=x^{5}+5 x^{3}+5 x+2$
4. $P\left(C_{6}, x\right)=x^{6}+6 x^{4}+9 x^{2}+4$
5. $P\left(C_{7}, x\right)=x^{7}+7 x^{5}+14 x^{3}+7 x+2$.

Theorem 1.9: The permanental polynomial of the star graph is given by

$$
P\left(K_{1, n}, x\right)=x^{n+1}+n x^{n-1} \text { for } n \geq 1 .
$$

Proof: Let $G=K_{1, n}$ be the star graph with $n+1$ vertices and n edges.

We know that the permanental polynomial of G is where is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ the adjacency matrix of the graph $K_{1, n}$.

$$
\begin{aligned}
& P\left(K_{1, n}, x\right)=\operatorname{per}\left(x I_{n}+A\left(K_{1, n}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 0 & 0 & 0 & \cdots & 0 \\
0 & x & 0 & 0 & \cdots & 0 \\
0 & 0 & x & 0 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & x
\end{array}\right)+\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & 0 & \cdots & 0 \\
& & & & \vdots & \\
1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 1 & 1 & & \cdots & 1 \\
1 & x & 0 & & \cdots & 0 \\
1 & 0 & x & & \cdots & 0 \\
& & & & \vdots & \\
1 & 0 & 0 & 0 & \cdots & x
\end{array}\right)\right) \\
& =x^{n+1}+n x^{n-1} \text {. }
\end{aligned}
$$

That is,

$$
P\left(K_{l, n}, x\right)=x^{n+1}+n x^{n-1} .
$$

This is true for all $n \geq 3$.
Note 1.9 : The first few permanental polynomial of the path graph is given below:

1. $P\left(K_{l, 1}, x\right)=x^{2}+1$
2. $P\left(K_{l, 2}, x\right)=x^{3}+2 x$
3. $P\left(K_{l, 3}, x\right)=x^{4}+3 x^{2}$
4. $P\left(K_{l, 4}, x\right)=x^{5}+4 x^{3}$
5. $P\left(K_{l, 5}, x\right)=x^{6}+5 x^{5}$
6. $P\left(K_{l, 6}, x\right)=x^{7}+6 x^{6}$.

Definition 1.10: The Triangular book graph is the complete tripartite graph $K_{1,1, n}$ triangles sharing a common edge. A book of this type is a Split graph. Here it is denoted by T_{n}. It has $(n+2)$ vertices and $(2 n+1)$ edges.

Figure 3 : T_{3}
Theorem 1.11: The permanental polynomial of the triangular book graph T_{n} is given by

$$
P\left(T_{n}, x\right)=x^{n+2}+(2 n+1) x^{n}+2 n(n-1) x^{n-2}+2 n x^{n-1} \text { for } n \geq 1 .
$$

Proof: Let $G=T_{n}$ be the triangular book graph with $(n+2)$ vertices and $(2 n+1)$ edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph T_{n}.

$$
\begin{aligned}
P\left(T_{n}, x\right) & =\operatorname{per}\left(x I_{n}+A\left(T_{n}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 0 & 0 & 0 & \cdots & 0 \\
0 & x & 0 & 0 & \cdots & 0 \\
0 & 0 & x & 0 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & x
\end{array}\right)+\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 1 \\
& & & & \vdots & & \\
1 & 1 & 1 & 1 & \cdots & 1 & 0
\end{array}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{ccccccc}
x & 0 & 0 & \cdots & 1 & 1 \\
0 & x & 0 & & \cdots & 1 & 1 \\
0 & 0 & x & \cdots & 1 & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 & x
\end{array}\right)\right) \\
& =x^{n+2}+(2 n+1) x^{n}+2 n(n-1) x^{n-2}+2 n x^{n-1} .
\end{aligned}
$$

That is,

$$
P\left(T_{n}, x\right)=x^{n+2}+(2 n+1) x^{n}+2 n(n-1) x^{n-2}+2 n x^{n-1} .
$$

This is true for all $n \geq 3$.
Note 1.12: The first few permanental polynomials of the triangular book graph T_{n} is given below :

1. $P\left(T_{1}, x\right)=x^{2}+3 x+2$
2. $P\left(T_{2}, x\right)=x^{4}+5 x^{2}+4 x+4$
3. $P\left(T_{3}, x\right)=x^{5}+7 x^{3}+6 x^{2}+12 x$.
4. $P\left(T_{4}, x\right)=x^{6}+9 x^{4}+8 x^{3}+24 x^{2}$
5. $P\left(T_{5}, x\right)=x^{7}+11 x^{5}+10 x^{4}+40 x^{3}$.

Definition 1.13 : The Bistar $B(n, n)$ is obtained by taking two stars on disjoint two vertex sets and then by making their centres u and v adjacent to each other by introducing a new edge $u v$. Clearly, $\{u, v\}$ is the centre of $B(n, n)$.

Figure $4: B(3,3)$
Theorem 1.14 : The permanental polynomial of the bistar graph $B(n, n)$ is given by

$$
P(B(n, n), x)=x^{2 n+2}+(2 n+1) x^{2 n}+n^{2} x^{2 n-2} \text { for } n \geq 1
$$

Proof : Let $G=B(n, n)$ be the bistar graph with $(2 n+2)$ vertices and $(2 n+1)$ edges. We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph $B(n, n)$.

$$
\begin{aligned}
& P(B(n, n), x)=\operatorname{per}\left(x I_{n}+A(B(n, n))\right. \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 0 & 0 & 0 & \cdots & 0 \\
0 & x & 0 & 0 & \cdots & 0 \\
0 & 0 & x & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & x
\end{array}\right)+\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
1 & 1 & 1 & 1 & \cdots & & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 1 & \cdots \\
0 \\
& & & & & \vdots & & & \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots \\
0
\end{array}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{ccccccccccc}
x & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & x & 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & x & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 1 & 1 & \cdots & x & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & x & 1 & \cdots & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & x
\end{array}\right)\right) \\
& =x^{2 n+2}+(2 n+1) x^{2 n}+n^{2} x^{2 n-2} .
\end{aligned}
$$

That is,

$$
P(B(n, n), x)=x^{2 n+2}+(2 n+1) x^{2 n}+n^{2} x^{2 n-2} .
$$

This is true for all $n \geq 3$.
Note 1.15 : The first few permanental polynomials of the bistar graph $B(n, n)$ is given below :

1. $P(B(1,1), x)=x^{2}+3 x^{2}+1$
2. $P(B(2,2), x)=x^{6}+5 x^{4}+4 x^{2}$
3. $P(B(3,3), x)=x^{8}+7 x^{6}+9 x^{4}$
4. $P(B(4,4), x)=x^{10}+9 x^{8}+16 x^{6}$
5. $P(B(5,5), x)=x^{12}+11 x^{10}+25 x^{8}$.

Theorem 1.16 : The permanental polynomial of the connected graph $C_{3} \hat{0} K_{1, n}$ is given by

$$
P\left(C_{3} \hat{0} K_{1, n}, x\right)=x^{n+3}+(n+3) x^{n+1}+n x^{n-1}+2 x^{n} \text { for } n \geq 1
$$

Proof : Let $G=C_{3} \hat{0} K_{1, n}$ be the connected graph.
Let the vertices of C_{3} be u_{0}, u_{1}, u_{2}. Let the n spokes of $K_{1, n}$ be $v_{1}, v_{2}, \cdots, v_{n}$.
Let v_{0} be the centre vertex of the star $K_{1, n}$. Identify u_{0} and v_{0}.
Let the graph so obtained be G. Clearly G has $(n+3)$ vertices and $(n+3)$ edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where
$A(G)$ is the adjacency matrix of the graph $C_{3} \hat{0} K_{1, n}$.

$$
\begin{aligned}
P\left(C_{3} \hat{0} K_{1, n}, x\right) & =\operatorname{per}\left(x I_{n}+A\left(C_{3} \hat{0} K_{1, n}\right)\right) \\
& =\operatorname{per}\left(\left(\begin{array}{cccccc}
x & 0 & 0 & 0 & \cdots & 0 \\
0 & x & 0 & 0 & \cdots & 0 \\
0 & 0 & x & 0 & \cdots & 0 \\
& & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & x
\end{array}\right)+\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
& & & & \vdots & & & \\
1 & 1 & 1 & 1 & \cdots & 1 & x & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & x & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & x & 1
\end{array}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{cccccccc}
x & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & x & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & x & 0 & \cdots & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & \cdots & x & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & x & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 1 & x
\end{array}\right) \\
& =x^{n+3}+(n+3) x^{n+1}+n x^{n-1} 2 x^{n} .
\end{aligned}
$$

That is,

$$
P\left(C_{3}, \hat{0} K_{1, n}, x\right)=x^{n+3}+(n+3) x^{n+1}+n x^{n-1}+2 x^{n} . .
$$

This is true for all $n \geq 3$.

Illustration 1.17 :

Figure 5: $C_{3} \hat{0} K_{1,5}$
Note 1.18 : The first few permanental polynomials of the connected graph $C_{3} \hat{0} K_{1, n}$ is given below :

1. $P\left(C_{3} \hat{0} K_{1,1}, x\right)=x^{4}+4 x^{2}+1+2 x$
2. $P\left(C_{3} \hat{0} K_{1,2}, x\right)=x^{5}+5 x^{3}+2 x+2 x^{2}$
3. $P\left(C_{3} \hat{0} K_{1,3}, x\right)=x^{6}+6 x^{4}+3 x^{2}+2 x^{3}$
4. $P\left(C_{3} \hat{0} K_{1,4}, x\right)=x^{7}+7 x^{5}+4 x^{3}+2 x^{4}$.

Definition 1.19: $K_{1, m} \odot K_{1, n}$ is a tree obtained by adding n pendant edges to each pendant vertices of $K_{1, m}$. It has $1+m+n m$ vertices and edges.
Theorem 1.20: The permanental polynomial of the graph $G_{n}=K_{1, m} \odot K_{1, n}, m=2$ is given by

$$
P\left(G_{n}, x\right)=x^{2 n+3}+(2 n+2) x^{2 n+1}+n(n+2) x^{2 n-1} \text { for } n \geq 1 .
$$

Proof: Let $G_{n}=K_{1, m} \odot K_{1, n}, m=2$.
$K_{1,2} \odot K_{1, n}$ is a tree obtained by adding n pendant edges to each pendant vertices of $K_{1,2}$.
G_{n} has $n m+3$ vertices and $n m+2$ edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph G_{n}.

$$
\begin{aligned}
P\left(G_{n}, x\right) & =\operatorname{per}\left(x I_{n}+A\left(G_{n}\right)\right) \\
& =x^{2 n+3}+(2 n+2) x^{2 n+1}+n(n+2) x^{2 n-1}
\end{aligned}
$$

That is,

$$
P\left(G_{n}, x\right)=x^{2 n+3}+(2 n+2) x^{2 n+1}+n(n+2) x^{2 n-1} .
$$

This is true for all $n \geq 1$.
Illustration 1.21 :

Figure $6: K_{1,2} \odot K_{1,2}$
Note 1.22: The first few permanental polynomial of the graph $G_{n}=K_{1,2} \odot K_{1, n}$ is given below :

1. $P\left(G_{1}, x\right)=x^{2}+4 x^{3}+3 x$
2. $P\left(G_{2}, x\right)=x^{7}+6 x^{5}+8 x^{3}$
3. $P\left(G_{3}, x\right)=x^{9}+8 x^{7}+15 x^{5}$
4. $P\left(G_{4}, x\right)=x^{11}+10 x^{9}+24 x^{7}$
5. $P\left(G_{5}, x\right)=x^{13}+12 x^{11}+35 x^{9}$.

Definition 1.23: Consider two stars $K_{1, n}^{(1)}$ and $K_{1, n}^{(2)}$ then $S_{n}=\left\langle K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}\right\rangle$ is the graph obtained by joining apex vertices of stars by an edge as well as to a new vertex x. It has $2 n+3$ vertices and edges.
Theorem 1.24: The permanental polynomial of the graph $S_{n}=\left\langle K_{1,2}^{(1)} \Delta K_{1, n}^{(2)}\right\rangle$ is given by

$$
P\left(S_{n}, x\right)=x^{2 n+3}+(2 n+3) x^{2 n+1}+\left(n^{2}+2 n\right) x^{2 n-1}+2 x^{2 n} \text { for } n \geq 1 .
$$

Proof : Let $S_{n}=\left\langle K_{1,2}^{(1)} \Delta K_{1, n}^{(2)}\right\rangle$.
Consider two stars $K_{1, n}^{(1)}$ and $K_{1, n}^{(2)}$.
Then $S_{n}=\left\langle K_{1,2}^{(1)} \Delta K_{1, n}^{(2)}\right\rangle$ is the graph obtained by joining apex vertices of stars by an edge as well as to a new vertex x.
It has $2 n+3$ vertices and $2 n+3$ edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph S_{n}.

$$
\begin{aligned}
P\left(S_{n}, x\right) & =\operatorname{per}\left(x I_{n}+A\left(S_{n}\right)\right) \\
& =x^{2 n+3}+(2 n+3) x^{2 n+1}+\left(n^{2}+2 n\right) x^{2 n-1}+2 x^{2 n}
\end{aligned}
$$

That is,

$$
P\left(S_{n}, x\right)=x^{2 n+3}+(2 n+3) x^{2 n+1}+\left(n^{2}+2 n\right) x^{2 n-1}+2 x^{2 n} .
$$

This is true for all $n \geq 1$.
Illustration 1.25 :

Figure $7:\left\langle K_{1,2}^{(1)} \Delta K_{1,2}^{(2)}\right.$
Note 1.26 : The first few permanental polynomial of the graph $\left.S_{n}=K_{1,2}^{(1)} \Delta K_{1,2}^{(2)}\right\rangle$ is given below :

1. $P\left(S_{1}, x\right)=x^{5}+5 x^{3}+3 x+2 x^{2}$
2. $P\left(S_{2}, x\right)=x^{7}+7 x^{5}+8 x^{3}+2 x^{4}$
3. $P\left(S_{3}, x\right)=x^{9}+9 x^{7}+15 x^{5}+2 x^{6}$
4. $P\left(S_{4}, x\right)=x^{11}+11 x^{9}+24 x^{7}+2 x^{8}$
5. $P\left(S_{5}, x\right)=x^{13}+13 x^{11}+35 x^{9}+2 x^{10}$.

Construction of New root graph R_{n} and their permanental polynomials

Let $G=C_{4}$.
R_{1} is formed from C_{4} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{4}{2}\right\rfloor=2$.
R_{2} is formed from R_{1} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{5}{2}\right\rfloor=2$.
R_{3} is formed from R_{2} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{6}{2}\right\rfloor=3$.
R_{4} is formed from R_{3} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{7}{2}\right\rfloor=3$.
In general R_{n} is formed from R_{n-1} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{n+3}{2}\right\rfloor$.
Theorem 1.27: The permanental polynomial of the new root graph R_{n} is given by

$$
P\left(R_{n}, x\right)=x^{n+4}+\left(n+4_{x}^{n+2}+3(n+1) x^{n} \text { for } n \geq 1 .\right.
$$

Proof : Let R_{n} be the new root graph with $(n+4)$ vertices and edges.

We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph R_{n}.

$$
\begin{aligned}
P\left(R_{n}, x\right) & =\operatorname{per}\left(x I_{n}+A\left(R_{n}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{cccccccc}
x & 1 & 0 & 0 & \cdots & 1 & 1 & 1 \\
1 & x & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & x & 1 & \cdots & 1 & 0 & 0 \\
& & & & \vdots & & & \\
1 & 0 & 1 & 0 & \cdots & x & 0 & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 & x & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & x
\end{array}\right) \\
& =x^{n+4}+(n+4) x^{n+2}+3(n+1) x^{n} .
\end{aligned}
$$

That is,

$$
P\left(R_{n}, x\right)=x^{n+4}+(n+4) x^{n+2}+3(n+1) x^{n} .
$$

This is true for all $n \geq 1$.
Note 1.28 : The first few permanental polynomial of the new root graph R_{n} is given below :

1. $P\left(R_{1}, x\right)=x^{5}+5 x^{3}+6 x$
2. $P\left(R_{2}, x\right)=x^{6}+6 x^{4}+9 x^{2}$
3. $P\left(R_{3}, x\right)=x^{7}+7 x^{5}+12 x^{3}$
4. $P\left(R_{4}, x\right)=x^{8}+8 x^{6}+15 x^{4}$
5. $P\left(R_{5}, x\right)=x^{9}+9 x^{7}+18 x^{5}$.

Construction of thorn graph $T H_{n}$ and their permanental polynomials
Let $G=P_{4}$.
$T H_{1}$ is formed from P_{4} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{4}{2}\right\rfloor=2$.
$T H_{2}$ is formed from $T H_{1}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{5}{2}\right\rfloor=2$.
$T H_{3}$ is formed from $T H_{2}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{6}{2}\right\rfloor=3$.
$T H_{4}$ is formed from $T H_{3}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{7}{2}\right\rfloor=3$.
In general $T H_{n}$ is formed from $T H_{n-1}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{n+3}{2}\right\rfloor$.

Theorem 1.29: The permanental polynomial of the thorn graph $T H_{1}$ is given by

$$
P\left(T H_{n}, x\right)=x^{n+4}+(n+3) x^{n+2}+2 n x^{n} \text { for } n \geq 1 .
$$

Proof : Let $T H_{n}$ be the thorn graph with $(n+4)$ vertices and $(n+3)$ edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph $T H_{n}$.

$$
\begin{aligned}
P\left(T H_{n}, x\right)= & \operatorname{per}\left(x I_{n}+A\left(T H_{n}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{cccccccc}
x & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & x & 1 & 0 & \cdots & 0 & 0 & 1 \\
0 & 1 & x & 1 & \cdots & 1 & 1 & 0 \\
& & & & \vdots & & & \\
0 & 0 & 1 & 0 & \cdots & x & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & x & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & x
\end{array}\right) \\
& =x^{n+4}+(n+3) x^{n+2}+2 n x^{n} .
\end{aligned}
$$

That is,

$$
P\left(T H_{n}, x\right)=x^{n+4}+(n+3) x^{n+2}+2 n x^{n} .
$$

This is true for all $n \geq 1$.
Note 1.30: The first few permanental polynomial of the thorn graph $T H_{n}$ is given below :

1. $P\left(T H_{1}, x\right)=x^{5}+5 x^{3}+2 x$
2. $P\left(T H_{2}, x\right)=x^{6}+5 x^{4}+4 x^{2}$
3. $P\left(T H_{3}, x\right)=x^{7}+6 x^{5}+6 x^{3}$
4. $P\left(T H_{4}, x\right)=x^{8}+7 x^{6}+8 x^{4}$
5. $P\left(T H_{5}, x\right)=x^{9}+8 x^{7}+10 x^{5}$.

Construction of octupus graph O_{n} and their permanental polynomials

Let $G=C_{4}$.
O_{1} is formed from C_{4} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{4}{2}\right\rfloor=2$.
O_{2} is formed from O_{1} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{6}{2}\right\rfloor=3$.
O_{3} is formed from O_{2} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{8}{2}\right\rfloor=4$.
O_{4} is formed from O_{3} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{10}{2}\right\rfloor=5$.
In general O_{n} is formed from $)_{n-1}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{2 n+2}{2}\right\rfloor$.

Theorem 1.31: The permanental polynomial of the Octupus graph O_{n} is given by

$$
P\left(O_{n}, x\right)=x^{n+4}+(n+4) x^{n+2}+2(n+2) x^{n} \text { for } n \geq 1 .
$$

Proof: Let O_{n} be the thorn graph with $(n+4)$ vertices and edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where
$A(G)$ is the adjacency matrix of the graph O_{n}.

$$
\begin{aligned}
P\left(O_{n}, x\right)= & \operatorname{per}\left(x I_{n}+A\left(O_{n}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{cccccccccc}
x & 1 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \\
1 & x & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \\
1 & 0 & x & 1 & \cdots & 0 & 0 & 0 & 0 & \\
& & & & \vdots & & & & & \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & x & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & x & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & x
\end{array}\right) \\
= & x^{n+4}+(n+4) x^{n+2}+2(n+2) x^{n} .
\end{aligned}
$$

That is,

$$
P\left(O_{n}, x\right)=x^{n+4}+(n+4) x^{n+2}+2(n+2) x^{n}
$$

This is true for all $n \geq 1$.
Note 1.32: The first few permanental polynomial of the thorn graph O_{n} is given below

1. $P\left(O_{1}, x\right)=x^{5}+5 x^{3}+6 x$
2. $P\left(O_{2}, x\right)=x^{6}+6 x^{4}+8 x^{2}$
3. $P\left(O_{3}, x\right)=x^{7}+7 x^{5}+10 x^{3}$
4. $P\left(O_{4}, x\right)=x^{8}+8 x^{6}+12 x^{4}$
5. $P\left(O_{5}, x\right)=x^{9}+9 x^{7}+14 x^{5}$.

Construction of octupus graph $C L_{n}$ and their permanental polynomials

Let $G=F_{2}$ where F_{2} is the two copies of C_{3} attached each other with a common vertex. $C L_{1}$ is formed from F_{2} by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{4}{2}\right\rfloor=2$.
$C L_{2}$ is formed from $C L_{1}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{5}{2}\right\rfloor=2$.
$C L_{3}$ is formed from $C L_{2}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{6}{2}\right\rfloor=3$.
$C L_{4}$ is formed from $C L_{3}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{7}{2}\right\rfloor=3$.

In general $C L_{n}$ is formed from $C L_{n-1}$ by joining the new vertex of K_{1} to one of the vertices of degree $\left\lfloor\frac{n+3}{2}\right\rfloor$.

Theorem 1.33 : The permanental polynomial of the Collar graph is given by

$$
P\left(C L_{n}, x\right)=x^{n+5}+(n+6) x^{n+3}+2(n+2) x^{n+1}+4 x^{n+2}+4 x^{n}+n x^{n}+n x^{n-1}
$$

for $n \geq 1$.
Proof : Let $C L_{n}$ be the thorn graph with $(n+5)$ vertices and (n+6) edges.
We know that the permanental polynomial of G is $P(G, x)=\operatorname{per}\left(x I_{n}+A(G)\right)$ where $A(G)$ is the adjacency matrix of the graph $C L_{n}$.

$$
\begin{aligned}
& P\left(C L_{n}, x\right)=\operatorname{per}\left(x I_{n}+A\left(C L_{n}\right)\right) \\
& =\operatorname{per}\left(\begin{array}{cccccccccc}
x & 1 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \\
1 & x & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \\
1 & 1 & x & 1 & \cdots & 1 & 1 & 1 & 1 & \\
& & & & \vdots & & & & & \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & x & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & x & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & x
\end{array}\right) \\
& =x^{n+5}+(n+6) x^{n+3}+2(n+2) x^{n+1}+4 x^{n+2}+4 x^{n}+n x^{n-1} \text {. }
\end{aligned}
$$

That is,

$$
P\left(C L_{n}, x\right)=x^{n+5}+(n+6) x^{n+3}+2(n+2) x^{n+1}+4 x^{n+2}+4 x^{n}+n x^{n-1}
$$

This is true for all $n \geq 1$.
Note 1.34 : The first few permanental polynomial of the thorn graph $C L_{n}$ is given below :

1. $P\left(C L_{1}, x\right)=x^{6}+7 x^{4}+7 x^{2}+4 x^{3}+4 x+1$
2. $P\left(C L_{2}, x\right)=x^{7}+8 x^{5}+9 x^{3}+4 x^{4}+4 x^{2}+2 x$
3. $P\left(C L_{3}, x\right)=x^{8}+9 x^{6}+11 x^{4}+4 x^{5}+4 x^{3}+3 x^{2}$
4. $P\left(C L_{4}, x\right)=x^{9}+10 x^{7}+13 x^{5}+4 x^{6}+4 x^{4}+4 x^{3}$
5. $P\left(C L_{5}, x\right)=x^{10}+11 x^{8}+15 x^{6}+4 x^{7}+4 x^{5}+5 x^{4}$.

References

[1] Devaraj J. and Sowmya S., On matching polynomial in graphs, Bulletin of Pure and Applied Sciences, 33E (Math \& Stat.) (2014), 75-90.
[2] Devaraj J. and Sowmya S., On dissection polynomial in graphs, Proceedings of the UGC sponsored National Seminar Emerging Trends in Graph Theory, (2015), 113-127.
[3] Devaraj J. and Sukumaran E., On vertex polynomial, International Journal of Math. Scis and Engg. Applications, IJMSEA, 6(V)(January 2012), 371-380.
[4] Edward J. Farewell, John W. Kennedy and Louis Quintas, Permanents, determinants and cycle polynomials, Graph Theory Notes of Newyork, XXXVI (1999), 30-34.
[5] Harary F., Graph Theory, Addison-Wesley, (1969).
[6] Weigen Yan and Fuji Zhang, On the permanental polynomials of some graphs, Journal of Mathematical Chemistry, 35 (2004), 175-188.

