International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 135-146

CONNECTED TOTAL DOMINATING SETS AND CONNECTED TOTAL DOMINATION POLYNOMIALS OF THE FAN GRAPH $F_{2, n}$

A. VIJAYAN ${ }^{1}$ AND T. ANITHA BABY ${ }^{2}$

Abstract

Let $G=(V, E)$ be a simple graph. A set S of vertices in G is said to be a total dominating set if each vertex $v \in V$ is adjacent to an element of S. A total dominating set S of G is called a connected total dominating set if the induced subgraph $\langle S\rangle$ is connected. In this paper, we study the concept of connected total domination polynomials of the Fan graph $F_{2, n}$. The connected total domination polynomial of a graph G of order n is the polynomial $D_{c t}(G, x)=\sum_{i=\gamma_{c t}(G)}^{n} d_{c t}(G, i) x^{i}$, where $d_{c t}(G, i)$ is the number of connected total dominating sets of G of size i and $\gamma_{c t}(G)$ is the connected total domination number of G. We obtain some properties of $D_{c t}\left(F_{2, n}, x\right)$ and their coefficients. Also, we obtain the recursive formula to derive the connected total dominating sets of the Fan graph $F_{2, n}$.

1. Introduction

Let $G=(V, E)$ be a simple graph of order $|V|=n$. A set S of vertices in a graph G is said to be a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A set S of vertices in a graph G is said to be a total dominating set if every vertex $v \in V$ is adjacent to an element of S. A total dominating set S of G is

Key Words : Connected total dominating set, Connected total domination number, Connected total domination polynomial, Fan graph.
(c) http: //www.ascent-journals.com
called a connected total dominating set if the induced subgraph $\langle S\rangle$ is connected. The minimum cardinality of a connected total dominating set S of G is called the connected total domination number and is denoted by $\gamma_{c t}(G)$.
Let $F_{2, n}$ be the Fan graph with $n+2$ vertices. In the next section, we construct the families of connected total dominating sets of $F_{2, n}$ by recursive method. In Section 3, we use the results obtained in Section 2 to study the connected total domination polynomials of the Fan graph $F_{2, n}$.
As usual we use $\binom{n}{i}$ for the combination n to i.

2. Connected Total Dominating Sets of the Fan Graph $F_{2, n}$

Fan graph $F_{2, n}$ [5] is a graph obtained by joining two vertices u and v to every vertices of a path graph P_{n}.

Let $F_{2, n}$ be a Fan graph with $n+2$ vertices. Label the vertices of $F_{2, n}$ as $v_{1}, v_{2}, v_{3}, \cdots$, v_{n+1}, v_{n+2}. Then, $V\left(F_{2, n}\right)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n+1}, v_{n+2}\right\}$ and $E\left(F_{2, n}\right)=$ $\left\{\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right),\left(v_{1}, v_{5}\right), \cdots\left(v_{1}, v_{n+1}\right),\left(v_{1}, v_{n+2}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{5}\right), \cdots,\left(v_{2}, v_{n+1}\right)\right.$, $\left.\left(v_{2}, v_{n+2}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right),\left(v_{5}, v_{6}\right), \cdots,\left(v_{n}, v_{n+1}\right),\left(v_{n+1}, v_{n+2}\right)\right\}$. Let $d_{c t}\left(F_{2, n}, i\right)$ be the number of connected total dominating sets of $F_{2, n}$ with cardinality i.
Lemma 2.1 : The following properties hold for all graph G with $|V(G)|=n+2$ vertices.
(i) $d_{c t}(G, n+2)=1$.
(ii) $d_{c t}(G, n+1)=n+2$.
(iii) $d_{c t}(G, i)=0$ if $i>n+2$.
(iv) $d_{c t}(G, 1)=0$.

Proof : The proof is given in [8].
Lemma 2.2: For all $n \in Z^{+},\binom{n}{i}=0$ if $i>n$ or $i<0$.
Lemma 2.3 : For any path graph P_{n} with n vertices,
(i) $d_{c t}\left(P_{n}, n\right)=1$.
(ii) $d_{c t}\left(P_{n}, n-1\right)=2$.
(iii) $d_{c t}\left(P_{n}, n-2\right)=1$.
(iv) $d_{c t}\left(P_{n}, i\right)=0$ if $i<n-2$ or $i>n$.

Theorem 2.4: For any path graph P_{n} with n vertices, $D_{c t}\left(P_{n}, x\right)=x^{n-2}+2 x^{n-1}+x^{n}$.
Proof : The proof is given in [6].
Theorem 2.5 : For a complete bipartite graph $K_{m, n}$, the connected total domination polynomial is $D_{c t}\left(K_{m, n}, x\right)=\left[(1+x)^{m}-1\right]\left[(1+x)^{n}-1\right]$.
Proof : The proof is given in [6].
Theorem 2.6 : Let $K_{2, n}$ be a complete bipartite graph with $n+2$ vertices, then $D_{c t}\left(K_{2, n}, x\right)=\left(x^{2}+2 x\right)\left[(1+x)^{n}-1\right]$.
Proof: The proof follows from Theorem 2.5 when $m=2$.
Theorem 2.7 : Let $K_{2, n}$ be a complete bipartite graph with $n+2$ vertices, then,

$$
\begin{aligned}
D_{c t}\left(K_{2, n}, i\right)= & \left\{\binom{n+2}{i}-\binom{n}{i}-1, \text { if } i=2\right. \\
& \left.\binom{n+2}{i}-\binom{n}{i} \text { for all } 3 \leq i \leq n+2\right\} .
\end{aligned}
$$

Proof : The proof follows from Theorem 2.6.
Theorem 2.8 : Let $F_{2, n}$ be a Fan graph with $n+2$ vertices, then $d_{c t}\left(F_{2, n}, i\right)=$ $d_{c t}\left(K_{2, n}, i\right)+d_{c t}\left(P_{n}, i\right)$ for all i.
Proof : Let $K_{2, n}$ be a complete bipartite graph with partite sets $V_{1}=\left\{v_{1}, v_{2}\right\}$ and $V_{2}=\left\{v_{3}, v_{4}, \cdots, v_{n+2}\right\}$. Let $v_{1}, v_{2} \in V\left(K_{2, n}\right)$ are the two vertices adjacent to all the vertices of P_{n}. Then $K_{2, n}$ be a spanning subgraph of $F_{2, n}$ and since $F_{2, n}-K_{2, n}=P_{n}$, we have, $K_{2, n} \cup P_{n}=F_{2, n}$. Therefore, the number of connected total dominating sets of the Fan graph $F_{2, n}$ with cardinality i is the sum of the connected totaldominating sets of the complete bipartite graph $K_{2, n}$ with cardinality i and the number of connected
total dominating sets of the path graph P_{n} with cardinality i. Hence, $d_{c t}\left(F_{2, n}, i\right)=$ $d_{c t}\left(K_{2, n}, i\right)+d_{c t}\left(P_{n}, i\right)$ for all i.
Theorem 2.9: Let $F_{2, n}, n \geq 2$ be a Fan graph with $n+2$ vertices, then
(i) $d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}$ for all $3 \leq i \leq n+2$ and $i \neq n-2, n-1, n$.
(ii) $d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}-1$ if $i=2$.
(iii) $d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}+1$, for $i=n-2, n$.
(iv) $d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}+2$ if $i=n-1$.

Proof: (i) By Theorem 2.8, we have, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(K_{2, n}, i\right)+d_{c t}\left(P_{n}, i\right)$ for all i. Since, $d_{c t}\left(P_{n}, i\right)=0$ for all $i<n-2$ and $i>n$ we have,

$$
\begin{aligned}
d_{c t}\left(F_{2, n}, i\right) & =d_{c t}\left(K_{2, n}, i\right) \text { for all } i<n-2 \text { or } i>n \\
& =\binom{n+2}{i}-\binom{n}{i} \text { for all } 3 \leq i \leq n+2
\end{aligned}
$$

and $i \neq n-2, n-1, n$, by Theorem 2.7.
(ii) When $i=2$ and $n \geq 5, d_{c t}\left(P_{n}, i\right)=0$. Therefore,

$$
\begin{aligned}
d_{c t}\left(F_{2, n}, i\right) & =d_{c t}\left(K_{2, n}, i\right) \\
& =\binom{n+2}{i}-\binom{n}{i}-1 \text { by Theorem 2.7. }
\end{aligned}
$$

(iii) Since, $d_{c t}\left(P_{n}, i\right)=1$ for $i=n-2, n$, we have,

$$
d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}+1 \text { if } i=n-2, n .
$$

(iv) Since, $d_{c t}\left(P_{n}, i\right)=2$ if $i=n-1$, we have,

$$
d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}+2 \text { if } i=n-1
$$

Theorem 2.10: Let $F_{2, n}, n \geq 6$ be a Fan graph with $n+2$ vertices, then
(i) $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+2$ if $i=2$.
(ii) $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)+1$ if $i=3$.
(iii) $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)-1$ for $i=n-1, n-3$.
(iv) $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)-2$ if $i=n-2$.
(v) $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)$ for all $4 \leq i \leq n+2$ and $i \neq$ $n-1, n-2, n-3$.

Proof: (i) When $i=2$,

$$
\begin{aligned}
d_{c t}\left(F_{2, n}, 2\right) & =\binom{n+2}{2}-\binom{n}{2}-1, \quad \text { by Theorem } 2.9(\mathrm{ii}) \\
& =2 n+1-1 \\
d_{c t}\left(F_{2, n}, 2\right) & =2 n
\end{aligned}
$$

Consider,

$$
\begin{aligned}
d_{c t}\left(F_{2, n-1}, 2\right) & =\binom{n+2}{2}-\binom{n-1}{2}-1 \text { by Theorem 2.9(ii) } \\
& =2 n-1-1 \\
& =2 n-2 \\
d_{c t}\left(F_{2, n-1}, 2\right) & =d_{c t}\left(F_{2, n}, 2\right)-2
\end{aligned}
$$

Therefore, $d_{c t}\left(F_{2, n}, 2\right)=d_{c t}\left(F_{2, n-1}, 2\right)+2$.
Hence, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+2$ if $i=2$.
(ii) When $i=3, d_{c t}\left(F_{2, n}, 3\right)=\binom{n+2}{3}-\binom{n}{3}$, by Theorem 2.9 (i).

Consider,

$$
\begin{aligned}
& \quad d_{c t}\left(F_{2, n-1}, 3\right)+d_{c t}\left(F_{2, n-1}, 2\right)=\binom{n+1}{3}-\binom{n-1}{3}+(\\
& \text { by Theorem } 2.9 \text { (i), (ii). } \\
& =\binom{n+1}{3}+\binom{n+1}{2}-\left[\binom{n-1}{3}+\binom{n-1}{2}\right]-1 \\
& =\binom{n+2}{3}-\binom{n}{3}-1 . \\
& d_{c t}\left(F_{2, n-1}, 3\right)+d_{c t}\left(F_{2, n-1}, 2\right)=d_{c t}\left(F_{2, n}, 3\right)-1
\end{aligned}
$$

Therefore, $d_{c t}\left(F_{2, n}, 3\right)=d_{c t}\left(F_{2, n-1}, 3\right)+d_{c t}\left(F_{2, n-1}, 2\right)+1$.

Hence, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)+1$ if $i=3$.
(iii) When $i=n-1$,

$$
\begin{aligned}
d_{c t}\left(F_{2, n}, i\right) & =\binom{n+2}{i}-\binom{n}{i}+2, \quad \text { by Theorem } 2.9 \text { (iv). } \\
d_{c t}\left(F_{2, n-1}, i\right) & =\binom{n+1}{i}-\binom{n-1}{i}+1, \quad \text { by Theorem } 2.9(\mathrm{iii}) . \\
d_{c t}\left(F_{2, n-1}, i-1\right) & =\binom{n+1}{i-1}-\binom{n-1}{i-1}+2, \quad \text { by Theorem } 2.9(\mathrm{iv}) .
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right) \\
& =\binom{n+1}{i}-\binom{n-1}{i}+1+\binom{n+1}{i-1}-\binom{n-1}{i-1}+2 \\
& =\binom{n+1}{i}+\binom{n+1}{i-1}-\left[\binom{n-1}{i}+\binom{n-1}{i-1}\right]+2+1 \\
& =\binom{n+2}{i}-\binom{n}{i}+2+1 \\
& =d_{c t}\left(F_{2, n}, i\right)+1
\end{aligned}
$$

Therefore, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+\left(F_{2, n-1}, i-1\right)-1$ if $i=n-1$.
When $i=n-3$,

$$
\begin{aligned}
d_{c t}\left(F_{2, n}, i\right) & =\binom{n+2}{i}-\binom{n}{i}, \text { by Theorem } 2.9(\mathrm{i}) \\
d_{c t}\left(F_{2, n-1}, i\right) & =\binom{n+1}{i}-\binom{n-1}{i}+1, \text { by Theorem } 2.9 \text { (iii). } \\
d_{c t}\left(F_{2, n-1}, i-1\right) & =\binom{n+1}{i-1}-\binom{n-1}{i-1}, \text { by Theorem } 2.9(\mathrm{i})
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right) \\
& =\binom{n+1}{i}-\binom{n-1}{i}+1+\binom{n+1}{i-1}-\binom{n-1}{i-1} \\
& =\binom{n+1}{i}+\binom{n+1}{i-1}-\left[\binom{n-1}{i}+\binom{n-1}{i-1}\right]+1 \\
& =\binom{n+2}{i}-(n)+1 \\
& =d_{c t}\left(F_{2, n}, i\right)+1
\end{aligned}
$$

Therefore, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)-1$ if $i=n-3$.
(iv) When $i=n-2$,

$$
\begin{aligned}
d_{c t}\left(F_{2, n}, i\right) & =\binom{n+2}{i}-\binom{n}{i}+1, \text { by Theorem } 2.9 \text { (iii). } \\
d_{c t}\left(F_{2, n}-1, i\right) & =\binom{n+1}{i}-\binom{n-1}{i}+2, \quad \text { by Theorem } 2.9(\mathrm{iv}) . \\
d_{c t}\left(F_{2, n-1}, i-1\right) & =\binom{n+1}{i-1}-\binom{n-1}{i-1}+1, \quad \text { by Theorem } 2.9 \text { (iii). }
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)=\binom{n+1}{i}-\binom{n-1}{i}+2 \\
& +\binom{n+1}{i-1}-\binom{n-1}{i-1}+1 \\
& =\binom{n+1}{i}+\binom{n+1}{i-1}-\left[\binom{n-1}{i}+\binom{n-1}{i-1}\right]+1+2 \\
& =\binom{n+2}{i}-\binom{n}{i}+1+2 \\
& =d_{c t}\left(F_{2, n}, i\right)+2
\end{aligned}
$$

Theorefore, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)-2$, if $i=n-2$.
(v) By Theorem 2.9 (i), we have $d_{c t}\left(F_{2, n}, i\right)=\binom{n+2}{i}-\binom{n}{i}$ for all $3 \leq i \leq n+2$ and $i \neq n-2, n-1, n$.

$$
\begin{aligned}
d_{c t}\left(F_{2, n-1}, i\right) & =\binom{n+1}{i}-\binom{n-1}{i} \\
d_{c t}\left(F_{2, n-1}, i-1\right) & =\binom{n+1}{i-1}-\binom{n-1}{i-1}
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)=\binom{n+1}{i}-\binom{n-1}{i}+\binom{n+1}{i-1}-\binom{n-1}{i-1} \\
& =\binom{n+1}{i}+\binom{n+1}{i-1}-\left[\binom{n-1}{i}+\binom{n-1}{i-1}\right] \\
& =\binom{n+2}{i}-\binom{n}{i} \\
& =d_{c t}\left(F_{2, n}, i\right) .
\end{aligned}
$$

Therefore, $d_{c t}\left(F_{2, n}, i\right)=d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)$ for all $4 \leq i \leq n+2$ and $i \neq n-1, n-2, n-3$, by (i) (ii) (iii) and (iv).

3. Connected Total Domination Polynomials of the Fan Graph $F_{2, n}$

Definition 3.1: Let $d_{c t}\left(F_{2, n}, i\right)$ be the number of connected total dominating sets of the Fan graph $F_{2, n}$ with cardinality i. Then, the connected total domination polynomial of $F_{2, n}$ is defined as,

$$
D_{c t}\left(F_{2, n}, x\right)=\sum_{i=\gamma_{c t}\left(F_{2, n}\right)}^{n+2} d_{c t}\left(F_{2, n}, i\right) x^{i},
$$

where $\gamma_{c t}\left(F_{2, n}\right)$ is the connected total domination number of $F_{2, n}$.
Remark 3.2: $\gamma_{c t}\left(F_{2, n}\right)=2$.
Proof: Let $F_{2, n}$ be a Fan graph with $n+2$ vertices. Let $v_{1}, v_{2} \in V\left(F_{2, n}\right)$ and v_{1}, v_{2} are adjacent to all the other vertices $v_{3}, v_{4}, v_{5}, \cdots, v_{n+1}, v_{n+2}$. The vertex v_{1} or v_{2} and one more vertex from $v_{3}, v_{4}, v_{5}, \cdots, v_{n+1}, v_{n+2}$ is enough to cover all the other vertices. Therefore, the minimum cardinality is 2 .
Hence, $\gamma_{c t}\left(F_{2, n}\right)=2$.
Theorem 3.3: Let $F_{2, n}$, be a Fan graph with $n+2$ vertices, then

$$
D_{c t}\left(F_{2, n}, x\right)=D_{c t}\left(K_{2, n}, x\right)+D_{c t}\left(P_{n}, x\right) .
$$

Proof : By the definition of connected total domination polynomial, we have

$$
\begin{aligned}
D_{c t}\left(F_{2, n}, x\right) & =\sum_{i=2}^{n+2} d_{c t}\left(F_{2, n}, i\right) x^{i} . \\
& =\sum_{i=2}^{n+2}\left[d_{c t}\left(K_{2, n}, i\right)+d_{c t}\left(P_{n}, i\right)\right] x^{i}, \quad \text { by Theorem 2.8. } \\
& =\sum_{i=2}^{n+2} d_{c t}\left(K_{2, n}, i\right) x^{i}+\sum_{i=2}^{n+2} d_{c t}\left(P_{n}, i\right) x^{i} . \\
& =D_{c t}\left(K_{2, n}, x\right)+D_{c t}\left(P_{n}, x\right) .
\end{aligned}
$$

Therefore, $D_{c t}\left(F_{2, n}, x\right)=D_{c t}\left(K_{2, n}, x\right)+D_{c t}\left(P_{n}, x\right)$.
Theorem 3.4: Let $D_{c t}\left(F_{2, n}, x\right)$ be the connected total domination polynomial of a Fan graph $F_{2, n}$ with $n+2$ vertices, then

$$
D_{c t}\left(F_{2, n}, x\right)=\sum_{i=2}^{n+2}\binom{n+2}{i} x^{i}-\sum_{i=2}^{n+2}\binom{n}{i} x^{i}-x^{2}+x^{n-2}+2 x^{n-1}+x^{n}
$$

Proof: The proof follows from Theorem 2.4, Theorem 2.7 and Theorem 3.3.
Theorem 3.5 : Let $D_{c t}\left(F_{2, n}, x\right)$ be the connected total domination polynomial of a Fan graph $F_{2, n}$ with $n+2$ vertices, then,

$$
D_{c t}\left(F_{2, n}, x\right)=(1+x) D_{c t}\left(F_{2, n-1}, x\right)+2 x^{2}+x^{3}-x^{n-3}-2 x^{n-2}-x^{n-1}, n \geq 7
$$

Proof : By the definition of connected total domination polynomial, we have,

$$
\begin{aligned}
D_{c t},\left(F_{2, n}, x\right) & =\sum_{i=2}^{n+2} d_{c t}\left(F_{2, n}, i\right) x^{i} . \\
& =\sum_{i=2}^{n+2}\left[d_{c t}\left(F_{2, n-1}, i\right)+d_{c t}\left(F_{2, n-1}, i-1\right)\right] x^{i}, \quad \text { by Theorem } 2.10(\mathrm{v}) . \\
& =\sum_{i=2}^{n+2} d_{c t}\left(F_{2, n-1}, i\right) x^{i}+\sum_{i=2}^{n+2} d_{c t}\left(F_{2, n-1}, i-1\right) x^{i} . \\
& =\sum_{i=2}^{n+2} d_{c t}\left(F_{2, n-1}, i\right) x^{i}+x \sum_{i=3}^{n+2} d_{c t}\left(F_{2, n-1}, i-1\right) x^{i-1} . \\
& =D_{c t}\left(F_{2, n-1}, x\right)+x D_{c t}\left(F_{2, n-1}, x\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
D_{c t}\left(F_{2, n}, x\right)=(1+x) D_{c t}\left(F_{2, n-1}, x\right) . \tag{1}
\end{equation*}
$$

When $i=2$,

$$
d_{c t}\left(F_{2, n}, 2\right) x^{2}=\left[d_{c t}\left(F_{2, n-1}, 2\right)+2\right] x^{2}, \quad \text { by Theorem } 2.10 \text { (i). }
$$

Hence,

$$
\begin{equation*}
d_{c t}\left(F_{2, n}, 2\right) x^{2}=d_{c t}\left(F_{2, n-1}, 2\right) x^{2}+2 x^{2} \tag{2}
\end{equation*}
$$

When $i=3$,

$$
d_{c t}\left(F_{2, n}, 3\right) x^{3}=\left[d_{c t}\left(F_{2, n-1}, 3\right)+d_{c t}\left(F_{2, n-1}, 2\right)+1\right] x^{3}, \quad \text { by Theorem } 2.10(\mathrm{ii}) .
$$

Hence,

$$
\begin{equation*}
d_{c t}\left(F_{2, n}, 3\right) x^{3}=d_{c t}\left(F_{2, n-1}, 3\right) x^{3}+d_{c t}\left(F_{2, n-1}, 2\right) x^{3}+x^{3} . \tag{3}
\end{equation*}
$$

When $i=n-1$,
$d_{c t}\left(F_{2, n}, n-1\right) x^{n-1}=\left[d_{c t}\left(F_{2, n-1}, n-1\right)+d_{c t}\left(F_{2, n-1}, n-2\right)-1\right] x^{n-1}$, by Theorem 2.10 (iii).

Hence,

$$
\begin{equation*}
d_{c t}\left(F_{2, n}, n-1\right) x^{n-1}=d_{c t}\left(F_{2, n-1}, n-1\right) x^{n-1}+d_{c t}\left(F_{2, n-1}, n-2\right) x^{n-1}-x^{n-1} . \tag{4}
\end{equation*}
$$

When $i=n-2$,
$d_{c t}\left(F_{2, n}, n-2\right) n^{-2}=\left[d_{c t}\left(F_{2, n-1}, n-2\right)+d_{c t}\left(F_{2, n-1}, n-3\right)-2\right] x^{n-2}$, by Theorem 2.10 (iv).
Hence,

$$
\begin{equation*}
d_{c t}\left(F_{2, n}, n-2\right) x^{n-2}=d_{c t}\left(F_{2, n-1}, n-2\right) x^{n-2}+d_{c t}\left(F_{2, n-1}, n-3\right) x^{n-2}-2 x^{n-2} . \tag{5}
\end{equation*}
$$

When $i=n-3$,
$d_{c t}\left(F_{2, n}, n-3\right) x^{n-3}=\left[d_{c t}\left(F_{2, n-1}, n-3\right)+d_{c t}\left(F_{2, n-1}, n-4\right)-1\right] x^{n-3}$, by Theorem 2.10 (iii).
Hence,

$$
\begin{equation*}
d_{c t}\left(F_{2, n}, n-3\right) x^{n-3}=d_{c t}\left(F_{2, n-1}, n-3\right) x^{n-3}+d_{c t}\left(F_{2, n-1}, n-4\right) x^{n-3}-x^{n-3} . \tag{6}
\end{equation*}
$$

Combining (1), (2), (3), (4), (5) and (6), we get,

$$
D_{c t}\left(F_{2, n}, x\right)=(1+x) D_{c t}\left(F_{2, n-1}, x\right)+2 x^{2}+x^{3}-x^{n-3}-2 x^{n-2}-x^{n-1} .
$$

Example 3.6 :

$$
D_{c t}\left(F_{2,6}, x\right)=12 x^{2}+36 x^{3}+56 x^{4}+52 x^{5}+28 x^{6}+8 x^{7}+x^{8} .
$$

By Theorem 3.5. we have,

$$
\begin{aligned}
D_{c t}\left(F_{2,7}, x\right)= & (1+x)\left(12 x^{2}+36 x^{3}+56 x^{4}+52 x^{5}+28 x^{6}+8 x^{7}+x^{8}\right) \\
& +2 x^{2}+x^{3}-x^{4}-2 x^{5}-x^{6} . \\
= & 14 x^{2}+49 x^{3}+91 x^{4}+106 x^{5}+79 x^{6}+36 x^{7}+9 x^{8}+x^{9} .
\end{aligned}
$$

We obtain $d_{c t}\left(F_{2, n}, i\right)$ for $2 \leq n \leq 15$ as shown in Table 1 .

Table 1

i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	5	4	1													
3	8	10	5	1												
4	9	18	15	6	1											
5	10	26	32	21	7	1										
6	12	36	56	52	28	8	1									
7	14	49	91	106	79	36	9	1								
8	16	64	140	196	183	114	45	10	1							
9	18	81	204	336	378	295	158	55	11	1						
10	20	100	285	540	714	672	451	212	66	12	1					
11	22	121	385	825	1254	1386	1122	661	277	78	13	1				
12	24	144	506	1210	2079	2640	2508	1782	936	354	91	14	1			
13	26	169	650	1716	3289	4719	5148	4290	2717	1288	444	105	15	1		
14	28	196	819	2366	5005	8008	9867	9438	7007	4004	1730	548	120	16	1	
15	30	225	1015	3185	7371	13013	17875	19305	16445	11011	5733	2276	667	136	17	1

Theorem 3.7 : The following properties hold for the coefficients of $D_{c t}\left(F_{2, n}, x\right)$ for all n.
(i) $d_{c t}\left(F_{2, n}, 2\right)=2 n, n \geq 5$.
(ii) $d_{c t}\left(F_{2, n}, 3\right)=n^{2}, n \geq 6$.
(iii) $d_{c t}\left(F_{2, n}, i\right)=0$ if $i<2$ or $i>n+2$.
(iv) $d_{c t}\left(F_{2, n}, n+2\right)=1$.
(v) $d_{c t}\left(F_{2, n}, n+1\right)=n+2$.
(vi) $d_{c t}\left(F_{2, n}, n\right)=\binom{n+2}{2}, n \geq 3$.
(vii) $d_{c t}\left(F_{2, n}, n-1\right)=\binom{n+2}{3}-\binom{n}{1}+2, n \geq 4$.
(viii) $d_{c t}\left(F_{2, n} n-2\right)=\binom{n+2}{4}-\binom{n}{2}+1, n \geq 5$.
(ix) $d_{c t}\left(F_{2, n}, n-3\right)=\binom{n+2}{5}-\binom{n}{3}, n \geq 6$.
$(\mathrm{x}) d_{c t}\left(F_{2, n}, n-4\right)=\binom{n+2}{6}-\binom{n}{4}, n \geq 7$.
(xi) $d_{c t}\left(F_{2, n}, n-i\right)=\binom{n+2}{i+2}-\binom{n}{i}$ for all $n \geq i+3$.

Proof : Proof is obvious.

References

[1] Alikhani S. and Peng Y. H., Introduction to Domination Polynomial of a graph, arXiv: 0905.225[v] [math.Co], 14 May (2009).
[2] Haynes T. W., Hedetniemi S. T. and Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[3] AlikhaniS., On the Domination Polynomial of Some Graph Operations, ISRN combin, (2013).
[4] Sahib Sh. Kahat, Abdul Jalil M. Khalaf and Roslan Hasni, Dominating sets and domination polynomials of wheels, Australian Journal of Applied Sciences, (2014).
[5] Saeid Alikhani and Emeric Deutsch, More on domination polynomial and domination root, arXiv: 1305. 3734v2, (2014).
[6] Vijayan A. and Anitha Baby T., Connected Total domination polynomials of graphs, International Journal of Mathematical Archieve, 5(11) (2014).
[7] Vijayan A., Anitha Baby T. and Edwin G., Connected total dominating sets and connected total domination polynomials of stars and wheels, IOSR Journal of Mathematics, (2014).
[8] Vijayan A. and Anitha Baby T., Connected total dominating sets and connected total domination polynomials of Gem graphs, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 3(Issue 6) (June 2015), 29-38.

