International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 233-242

L-FUZZY BP-IDEAL

Y. CHRISTOPHER JEFFERSON ${ }^{1}$ AND M. CHANDRAMOULEESWARAN ${ }^{2}$
${ }^{1}$ Department of Mathematics,
Spicer Adventist University, Pune, Maharashtra, India
${ }^{2}$ Head, PG \& Research Department of Mathematics, S.B.K. College, Aruppukottai, Tamilnadu, India

Abstract

In this paper, we define the notion of L-Fuzzy BP-ideal. We discuss the properties of L-Fuzzy BP-ideals and prove some results.

1. Introduction

In 1966 Y. Imai and K. Iseki introduced two classes of abstract algebra, BCK algebras and BCI algebras [3,4]. In 2012 Sun Shin Ahn and Jeong Soon Han introduced the notion of BP-Algebras [7]. In 1975 Iseki introduced the concept of implicative ideals [5]. In 1971 A. Rosenfeld initiated the study of fuzzy algebraic structures [6] In 1965 L. A. Zadeh introduced the notion of fuzzy sets [8]. L Goguen extended the notion of fuzzy sets into L-fuzzy sets where L is a complete lattice [2]. In our earlier paper we have introduced the notion of fuzzy structures in BP-algebras [1]. In this paper, we introduce the notion of L-Fuzzy BP-ideals.

Key Words : BP Algebras, L-BP Ideals, L-Fuzzy BP algebras, L-Fuzzy BP Ideals. AMS Subject Classification : 03E72, 06F35, 03G25.
(c) http: //www.ascent-journals.com

2. Preliminaries

In this section we recall some basic definitions that are needed for our work.
Definition 2.1: A BP algebra $(X, *, 0)$ is a non-empty set X with a constant 0 and a binary operation $*$ satisfying the following conditions: for all $x, y, z \in X$,
(i) $x * x=0$
(ii) $x *(x * y)=y$
(iii) $(x * z) *(y * z)=x * y$.

Definition 2.2 : A non-empty subset I of BP-algebra $(X, *, 0)$ is said to be an Ideal of X if it satisfies the following conditions: $\forall x, y \in I$
(i) $0 \in I$
(ii) $x * y \in I$ and $y \in I \Rightarrow x \in I$.

Definition 2.3: Let S be a non-empty set. A mapping $\mu: S \rightarrow L$ is called a fuzzy subset of S.
Definition 2.4: A lattice is a partially ordered set in which any two elements have a least upper bound and a greatest lower bound.
Definition2.5 : A lattice L is called a complete lattice if every subset $A=\left\{a_{\alpha}\right\}$ has a sup denoted by $\vee a_{\alpha}$ and inf denoted by $\wedge a_{\alpha}$ where $0 \equiv \wedge a_{\alpha}$ is the least element of L and $1 \equiv \wedge a_{\alpha}$ is the greatest element of $L: 0 \leq a$ and $1 \geq a$ for every $a \in L$.
Definition 2.6 : Let X be a non-empty set and $L:(L, \leq)$ be a complete lattice with least element 0 and greatest element 1. A L-fuzzy subset μ of X is a function $\mu: X \rightarrow L$. Definition 2.7: A L-fuzzy subset μ of a BP-algebra $(X, *, 0)$ is called a L-fuzzy BP sub algebra if $\mu(x * y) \geq \mu(x) \wedge \mu(y) \quad \forall x, y \in X$.

3. L-Fuzzy BP-Ideals

In this section we introduce the notion of L-Fuzzy BP ideals and prove some simple results.

Definition 3.1 : Let X be a BP-algebra. A L-fuzzy subset set μ of X is said to be a L-fuzzy subset BP-ideal of X if it satisfies the following conditions:
(i) $\mu(0) \geq \mu(x) \quad \forall x \in X$
(ii) $\mu(x) \geq(x * y) \wedge \mu(y) \quad \forall x, y \in X$.

Example 3.2: Let $(X=\{0,1,2,3\}, *, 0)$ be a BP-algebra with the following Cayley table.

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Define $\mu: X \rightarrow L$ by

$$
\mu=\left\{\begin{array}{lll}
1 & \text { if } & x=0 \\
t_{1} & \text { if } & x=2 \\
t_{2} & \text { if } & x=1 \\
0 & \text { if } & x=3
\end{array}\right.
$$

$t_{1}, t_{2} \in L$ and $\inf L \leq t_{1} \leq t_{2} \leq \sup L$.
$\therefore \mu$ is a L-fuzzy BP-ideal of the BP-algebra X.
Proposition 3.3 : Intersection of two L-fuzzy BP-ideals of X is again a L-fuzzy BPideal of X.

Proof : Let μ and ψ be any two fuzzy BP-ideals of X.

$$
\begin{aligned}
(\mu \cap \psi)(0) & =(\mu \cap \psi)(x * x) \\
\geq & \geq \mu(x * x) \wedge \psi(x * x) \\
\geq & \{\{\mu(x) \wedge \mu(x)\} \wedge\{\psi(x) \wedge \psi(x)\}\} \\
& =\{\{\mu(x) \wedge \psi(x)\} \wedge\{\mu(x) \wedge \psi(x)\}\} \\
= & \{(\mu \cap \psi)(x) \wedge(\mu \cap \psi)(x)\} \\
= & (\mu \cap \psi)(x) \\
\therefore & (\mu \cap \psi)(0) \geq(\mu \cap \psi)(x) \\
(\mu \cap \psi)(x)= & \mu(x) \wedge \psi(x) \\
\geq & (\mu(x * y) \wedge \mu(y)) \wedge(\psi(x * y) \wedge \psi(y)) \\
= & (\mu(x * y) \wedge \psi(x * y)) \wedge(\mu(y) \wedge \psi(y)) \\
= & (\mu \cap \psi)(x * y) \wedge(\mu \cap \psi)(y), \text { for all } x, y \in X
\end{aligned}
$$

Hence $\mu \cap \psi$ is a L-fuzzy BP-ideal of X.
Proposition 3.4 : If μ is a L fuzzy BP-ideal of a BP-algebra $(X, *, 0)$, then $\forall x, y \in X$.

1. μ is order reversing; that is, $x \leq y$ implies $\mu(x) \geq \mu(y)$
2. $\mu(x *(x * y)) \geq \mu(y)$.

Proof : Since μ is a fuzzy BP-ideal of X.
Let $x \leq y \Rightarrow x * y=0$
$\Rightarrow \mu(x * y)=\mu(0)$
$\therefore \mu(x * y)=\mu(0) \geq \mu(x)$.
$\mu(x) \geq \mu(x * y) \wedge \mu(y)$
$\geq \mu(0) \wedge \mu(y)$
$=\mu(y)$
$\therefore \quad \mu(x) \geq \mu(y)$.
By definition 2.1(ii) $x *(x * y)=y$

$$
\begin{aligned}
& \therefore(x *(x * y)) * y=y * y \\
& \Rightarrow(x *(x * y)) * y=0 \\
& \Rightarrow x *(x * y) \leq y .
\end{aligned}
$$

By (1) μ is order reversing, $\mu(x *(x * y)) \geq \mu(y) \forall x, y \in X$.
Proposition 3.5: If μ is a L-fuzzy ideal of a BP-algebra $(X, *, 0)$ and $\mu_{\alpha}(x)=(\alpha \wedge$ $\mu(x)) \forall x \in X$ and $\alpha \in L$, then $\mu_{\alpha}(x)$ is L fuzzy BP-ideal of X.
Proof : Let μ be a L-fuzzy ideal of the BP-algebra $(X, *, 0)$ and $\alpha \in L$.

$$
\therefore \quad \mu(0) \geq \mu(x) \quad \forall x \in X .
$$

Now,

$$
\mu_{\alpha}(0)=\{\alpha \wedge \mu(0)\} \geq\{\alpha \wedge \mu(x)\}=\mu_{\alpha}(x) \quad \forall x \in X
$$

Also, μ is a L-fuzzy ideal of X shows that

$$
\begin{aligned}
\mu(x) \geq & \geq(x * y) \wedge \mu(y) \quad \forall \quad x, y \in X \\
\mu_{\alpha}(x) & =(\alpha \wedge \mu(x)) \\
& \geq\{\alpha \wedge(\mu(x * y) \wedge \mu(y))\} \\
& =(\alpha \wedge \mu(x * y)) \wedge(\alpha \wedge \mu(y))\} \\
& =\left\{\mu_{\alpha}(x * y) \wedge \mu_{\alpha}(y)\right\}
\end{aligned}
$$

$\Rightarrow \mu_{\alpha}(x)$ is a L-fuzzy ideal of X. Since this is true for all $\alpha \in L, \mu_{\alpha}$ is L-fuzzy BP-ideal of X for all $\alpha \in L$.
Corollary 3.6 : If μ is a L-fuzzy BP-ideal of a BP-algebra X and

$$
\mu_{\mu(\alpha)}(x)=\{(\mu(\alpha) \wedge \mu(x)\} \quad \forall \alpha, \quad x \in X
$$

Then $\mu_{\mu(\alpha)}$ is a L-fuzzy BP-ideal of $X \forall \alpha, \quad x \in X$.
Theorem 3.7 : A L-fuzzy subset μ of a BP-algebra $(X, *, 0)$ is a L-fuzzy BP-ideal if and only if for any $\lambda \in L$,

$$
U(\mu, \lambda)=\{x: x \in X, \mu(x) \geq \lambda\}
$$

is an ideal of X where $U(\mu, \lambda) \neq \varnothing$.
Proof : Suppose μ is a L fuzzy ideal of X and $U(\mu, \lambda) \neq \varnothing$ for $\lambda \in L$.
Let $x \in U(\mu, \lambda)$, then $\mu(x) \geq \lambda$. By definition of L-fuzzy BP-ideal, we have $\mu(0) \geq$ $\mu(x) \geq \lambda$. Thus $0 \in U(\mu, \lambda)$.

Suppose $x * y \in U(\mu, \lambda)$ and $y \in U(\mu, \lambda)$. Therefore, $\mu(x * y) \geq \lambda$ and $\mu(y) \geq \lambda$.
By definition, we have $\mu(x) \geq \min \{\mu(x * y) \wedge \mu(x)\} \geq \lambda$. So $x \in U(\mu, \lambda)$.
Hence (μ, λ) is an BP-ideal of X.
Conversely, suppose that for each $\lambda \in L, U(\mu, \lambda)$ is either empty or an ideal of X.
For any $x \in X$, let $\mu(x)=\lambda$. Then $x \in U(\mu, \lambda)$.
Since $U(\mu, \lambda) \neq \varnothing$ is an ideal of X, we have $0 \in U(\mu, \lambda)$ and hence $\mu(0) \geq \lambda=\mu(x)$. Thus $\mu(0) \geq \mu(x) \quad \forall x \in X$.
Assume $\mu(x) \geq\{\mu(x * y) \wedge \mu(y)\} \quad \forall x, y \in X$ is not true. Then there exists $x_{0}, y_{0} \in X$ such that

$$
\begin{aligned}
\mu\left(x_{0}\right) & \leq\left\{\mu\left(x_{0} * y_{0}\right) \wedge \mu\left(y_{0}\right)\right\} \\
& \Rightarrow \mu\left(x_{0}\right)<\lambda_{0}<\left\{\mu\left(x_{0} * y_{0}\right) \wedge \mu\left(y_{0}\right)\right\}
\end{aligned}
$$

We have $x_{0} * y_{0}, y_{0} \in U\left(\mu, \lambda_{0}\right)$ and $U\left(\mu, \lambda_{0}\right) \neq \varnothing$.
But $U\left(\mu, \lambda_{0}\right)$ is an ideal of X. So $x_{0} \in U\left(\mu, \lambda_{0}\right)$ by the definition of BP-ideal. $\mu\left(x_{0}\right) \geq \lambda_{0}$, contradicting $(\mu(0) \geq \mu(x) \quad \forall x \in X)$.
Therefore $\mu(x) \geq\{\mu(x * y) \wedge \mu(y)\}$.
Theorem 3.8 : A fuzzy subset μ of a BP-algebra $(X, *, 0)$ is a L-fuzzy BP-ideal if and only if every nonempty level subset of $U(\mu, s), s \in \operatorname{Im}(\mu)$ is a BP-ideal.

Proof : Let μ be a L-fuzzy BP-ideal.
Claim : $U(\mu, s), s \in \operatorname{Im}(\mu)$ is a BP-ideal.
Since $U(\mu, s) \neq \emptyset$ there exist $x \in U(\mu, s)$ such that $\mu(x) \geq s$.
Since μ is a fuzzy BP-ideal, $\mu(0) \geq \mu(x) \forall x \in X$. Hence for this $x \in U(\mu, s), \mu(0) \geq s$ which shows that $0 \in U(\mu, s)$.
Now, for any $x, y \in X$, assume that $x * y \in U(\mu, s)$ and $y \in U(\mu, s)$.

$$
x * y \in U(\mu, s) \Rightarrow \mu(x * y) \geq s
$$

Also

$$
\begin{aligned}
& y \in U(\mu, s) \Rightarrow \mu(y) \geq s \\
\therefore \quad & \mu(x * y) \geq s, \quad \mu(y) \geq s \\
\Rightarrow & \{\mu(x * y) \wedge \mu(y)\} \geq s .
\end{aligned}
$$

Since μ is a L-fuzzy BP-ideal, $\mu(x) \geq\{\mu(x * y) \wedge \mu(y)\} \geq s$. Thus proving $x \in U(\mu, s)$.
This proves that $U(\mu, s)$ is a BP-ideal of X.
Conversely, let $U(\mu, s), s \in \operatorname{Im}(\mu)$ is a BP-ideal of X.
Claim : μ is a L-fuzzy BP-ideal.
Let $x, y \in X$. For any $s \in \operatorname{Im}(\mu)$, let $s=\{\mu(x * y) \wedge \mu(y)\}$. Therefore, $\mu(x * y) \geq s$ and $\mu(y) \geq s$.
This shows that $x * y, y \in U(\mu, s)$.
Since $U(\mu, s)$ is a BP-ideal we have $x \in U(\mu, s)$.
This proves that $\mu(x) \geq s=\{\mu(x * y) \wedge \mu(y)\}$.
This shows that μ is a L-fuzzy BP-ideal of X.
Theorem 3.9: Let μ be a L-fuzzy BP-ideal of BP-algebra X and let $x \in X$. Then $\mu(x)=t$ if and only if $x \in U(\mu, t)$ but $x \notin U(\mu, s) \forall s>t$.
Proof: Let μ be a L-fuzzy BP-ideal of X and let $x \in X$. Assume $\mu(x)=t$, so that $x \in U(\mu, t)$.
If possible, let $x \in U(\mu, s)$ for $s>t$. Then $\mu(x) \geq s>t$. This contradicts the fact that $\mu(x)=t$, concludes that $x \notin U(\mu, s) \quad \forall s>t$.
Conversely, let $x \in U(\mu, t)$ but $x \notin U(\mu, s) \forall s>t$.

$$
x \in U(\mu, t) \Rightarrow \mu(x) \geq t
$$

Since $x \notin U(\mu, s) \quad \forall s>t, \quad \mu(x)=t$.
Theorem 3.10 : Let X be a BP-algebra. Let λ and μ be the L-fuzzy BP-ideals of X. Then $\lambda \times \mu$ is a L fuzzy BP-ideal of $X \times X$.
Proof : Let X be a BP-algebra and let λ and μ be L-fuzzy BP-ideals of X. For any $(x, y) \in X \times X$.

$$
\begin{aligned}
(\lambda \times \mu)(0,0) & =\{\lambda(0) \wedge \mu(0)\} \\
& \geq\{\lambda(x) \wedge \mu(x)\} \\
& =(\lambda \times \mu)(x)
\end{aligned}
$$

Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right) \in X \times X, x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$.

$$
\begin{aligned}
(\lambda \times \mu)(x) & =(\lambda \times \mu)\left(x_{1}, x_{2}\right) \\
& =\left\{\lambda\left(x_{1}\right) \wedge \mu\left(x_{2}\right)\right\} \\
& \geq\left\{\left(\lambda\left(x_{1} * y_{1}\right) \wedge \lambda\left(y_{1}\right)\right) \wedge\left(\mu\left(x_{2} * y_{2}\right) \wedge \mu\left(y_{2}\right)\right)\right\} \\
& =\left\{\left(\lambda\left(x_{1} * y_{1}\right) \wedge \mu\left(x_{2} * y_{2}\right)\right) \wedge\left(\lambda\left(y_{1}\right) \wedge \mu\left(y_{2}\right)\right)\right\} \\
& =\left\{(\lambda \times \mu)\left(x_{1} * y_{1} \wedge x_{2} * y_{2}\right) \wedge\left((\lambda \times \mu)\left(y_{1}, y_{2}\right)\right)\right\} \\
& =\left\{\lambda \times \mu\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right) \wedge(\lambda \times \mu)\left(y_{1}, y_{2}\right)\right\} \\
& =\{(\lambda \times \mu)(x, y) \wedge(\lambda \times \mu)(y)\}
\end{aligned}
$$

Thus $(\lambda \times \mu)$ is a fuzzy BP-ideal of $X \times X$.
Theorem 3.11 : For any two L-fuzzy subsets λ and μ of X, if $\lambda \times \mu$ is a L fuzzy BP-ideal of X, then either λ or μ is a L-fuzzy BP-ideal of X.
Proof : Let λ and μ be L-fuzzy subsets of X such that $\lambda \times \mu$ is a L-fuzzy BP-ideal of X.

$$
\therefore \quad(\lambda \times \mu)(0,0) \geq(\lambda \times \mu)(x, y) \text { for all }(x, y) \in X \times X
$$

Assume $\lambda(x)>\lambda(0)$ and $\mu(y)>\mu(0)$ for some $x, y, x \in X$. Then

$$
\begin{aligned}
(\lambda \times \mu)(x, y) & =\{\lambda(x) \wedge \mu(y)\} \\
& >\{\lambda(0) \wedge \mu(0)\} \\
& =(\lambda \times \mu)(0) \text { for all }(x, y) \in X \times X
\end{aligned}
$$

which is a contradiction. Thus $\lambda(x) \geq \lambda(0)$ or $\mu(0)>\mu(y) \forall y \in X$.

Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right) \in X \times X$

$$
\begin{aligned}
(\lambda \times \mu)(x) & \geq\{(\lambda \times \mu)(x * y) \wedge(\lambda \times \mu)(y)\} \\
& =\left\{(\lambda \times \mu)\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \wedge(\lambda \times \mu)\left(y_{1}, y_{2}\right)\right\} \\
& =\left\{\left(\lambda\left(x_{1} * y_{1}\right) \wedge \mu\left(x_{1}, x_{2}\right)\right) \wedge\left(\lambda\left(y_{1}\right) \wedge \mu\left(y_{2}\right)\right)\right\} \\
\left\{\left(\lambda\left(x_{1}\right) \wedge \mu\left(x_{2}\right)\right\}\right. & \geq\left\{\left(\lambda\left(x_{1} * y_{1}\right) \wedge\left(\lambda\left(y_{1}\right)\right) \wedge\left(\mu\left(x_{1}, y_{2}\right) \wedge \mu\left(y_{2}\right)\right)\right\}\right. \\
\Rightarrow \operatorname{either}\left(\lambda\left(x_{1}\right)\right. & \geq\left(\lambda\left(x_{1} * y_{1}\right) \wedge\left(\lambda\left(y_{1}\right)\right)\right\} \text { or } \\
\mu\left(x_{2}\right) & \geq\left(\mu\left(x_{1}, y_{2}\right) \wedge \mu\left(y_{2}\right)\right)
\end{aligned}
$$

$\Rightarrow \lambda$ or μ is is L-fuzzy ideal of X.
Theorem 3.12 : Let λ and μ be L-fuzzy BP-ideals of X_{1} and X_{2} respectively. Then $\lambda \times \mu$ is a L-fuzzy BP-ideal of $X_{1} \times X_{2}$.
Proof : Let λ be a fuzzy BP-ideal of X_{1}.
Let μ be a fuzzy BP-ideal of X_{2}.
Claim : $\lambda \times \mu$ is fuzzy BP-ideals of $X_{1} \times X_{2}$. For any $(x, y) \in X_{1} \times X_{2}$.

$$
\begin{aligned}
(\lambda \times \mu)(0,0) & =\{\lambda(0) \wedge \mu(0)\} \\
& \geq\{\lambda(x) \wedge \mu(y)\} \\
& =(\lambda \times \mu)(x, y)
\end{aligned}
$$

Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right) \in X \times X$.

$$
\begin{aligned}
(\lambda \times \mu)\left(x_{1}, x_{2}\right) & =\left\{\left(\lambda\left(x_{1}\right) \wedge \mu\left(x_{2}\right)\right)\right\} \\
& \geq\left\{\left(\lambda\left(x_{1} * y_{1}\right) \wedge \lambda\left(y_{1}\right)\right) \wedge\left(\mu\left(x_{2} * y_{2}\right) \wedge \mu\left(y_{2}\right)\right)\right\} \\
& =\left\{\left(\lambda\left(x_{1} * y_{1}\right) \wedge \mu\left(x_{2} * y_{2}\right)\right) \wedge\left(\lambda\left(y_{1}\right) \wedge \mu\left(y_{2}\right)\right)\right\} \\
& =\left\{(\lambda \times \mu)\left(x_{1} * y_{1} \wedge x_{2} * y_{2}\right) \wedge\left(\lambda \times \mu\left(y_{1}, y_{2}\right)\right)\right\} \\
& =\left\{(\lambda \times \mu)\left(\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)\right) \wedge(\lambda \times \mu)\left(y_{1}, y_{2}\right)\right\} .
\end{aligned}
$$

Thus $\lambda \times \mu$ is a L-fuzzy BP-ideal of $X_{1} \times X_{2}$.
Theorem 3.13: Inverse image of fuzzy BP-ideal is again a fuzzy BP-ideal.
Proof : Let $f: X_{1} \rightarrow X_{2}$ be an epimorphism. Let σ be fuzzy BP-ideal of X_{2}.

To prove : $f^{-1}(\sigma)$ is a fuzzy BP-ideal of X_{1}.

$$
\begin{aligned}
\left(f^{-1}(\sigma)(x)\right) & =\sigma(f(x)) \\
& \geq\{\sigma(f(x) * f(y)) \wedge \sigma(f(y))\} \\
& =\{\sigma(f(x * y) \wedge \sigma(f(y))\} \quad \text { (since } f \text { is epimorphismn) } \\
& =\left(f^{-1}(\sigma)(x * y) \wedge f^{-1}(\sigma)(y) \forall x, y \in X\right.
\end{aligned}
$$

Thus $f^{-1}(\sigma)$ is a L-fuzzy BP-ideal of X_{1}.
Theorem 3.14: Let $f: X_{1} \rightarrow X_{2}$ be an epimorphism of BP-algebras. Let μ be a L-fuzzy subset of X_{2}. If $f^{-1}(\mu)$ is a L-fuzzy BP-ideal of X_{1}, then μ is a L-fuzzy BP-ideal of X_{2}.

Proof: Let $f: X_{1} \rightarrow X_{2}$ be an epimorphism of BP-algebras.
Let μ be a fuzzy subset of X_{2}. Let $f^{-1}(\mu)$ is a fuzzy BP-ideal of X_{1}.
Claim : μ is a fuzzy BP-ideal of $X_{2} \cdot \mu\left(0_{x_{2}}\right)=\mu\left(f\left(0_{x_{1}}\right) \geq f^{-1}\left(\left(\mu\left(x_{1}\right)=\mu\left(f\left(x_{1}\right)\right)=\right.\right.\right.$ $\mu\left(x_{2}\right)$. Let $x_{2}, y_{2} \in X_{2}$. Since f is an epimorphism, $x_{1}, y_{1} \in X_{1}$ such that $f\left(x_{1}\right)=x_{2}$ and $f\left(y_{1}\right)=y_{2}$ that is, $x_{1}=f^{-1}\left(x_{2}\right)$ and $y_{1}=f^{-1}\left(y_{2}\right)$.

$$
\begin{aligned}
\mu\left(x_{2}\right) & =\mu\left(f\left(x_{1}\right)\right) \\
& =f^{-1}\left(\mu\left(x_{1}\right)\right) \\
& \geq\left\{f^{-1}\left(\mu\left(x_{1} * y_{1}\right)\right) \wedge f^{-1}\left(\mu\left(y_{1}\right)\right)\right\} \\
& =\left\{\mu\left(f\left(x_{1} * y_{1}\right)\right) \wedge \mu\left(f\left(y_{1}\right)\right)\right\} \\
& =\left\{\mu\left(f\left(x_{1}\right) * f\left(y_{1}\right)\right) \wedge \mu\left(f\left(y_{1}\right)\right)\right\} \\
& =\left\{\mu\left(x_{2} * y_{2}\right) \wedge \mu\left(y_{2}\right)\right\}
\end{aligned}
$$

$\therefore \quad \mu$ is a L-fuzzy BP-ideal of X_{2}.

References

[1] Christopher Jefferson Y., Chandramouleeswaran M., Fuzzy algebraic structure in BP-algebras, Mathematical Sciences International Research Journal, 4(2) (2015), 336-340.
[2] Goguen J. A., L-Fuzzy Sets, Journal of Mathematical Analysis and Application, 18 (1967), 145-174.
[3] Imai Y., Iseki K., On axiom systems of propositional calculi XIV.Proceedings of the Japan Academy, 42(1) (1966), 19-22.
[4] Iseki K., 0n BCI-algebras, Math. Seminar Notes. 8 (1980), 125-130.
[5] Iseki K., On ideals in BCK-algebras. Mathematics Seminar Notes Kobe University, 3(1) (1975), 1-12.
[6] Rosenfeld A., Fuzzy groups. Journal of Mathematical Analysis and Applications, 35(3) (1971), 512-517.
[7] Sun Shin Ahn and Jeong Soon Han, 0n BP-Algebras, Hacettepe Journal Of Mathematics and Statistics, 42(5) (2013), 551-557.
[8] Zadeh L. A., Fuzzy sets. Information and Control, 8(3) (1965), 338-353.

