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Abstract
In this paper, we calculate the number of all orientable small covers over prisms
and polygons up to homeomorphism.

1. Introduction

The notion of small covers is first introduced by Davis and Januszkiewicz [5], where

a small cover is a smooth closed manifold Mn with a locally standard (Z2)n−action

such that its orbit space is a simple convex polytope. Nakayama and Nishimura found

an orientability condition for a small cover [7]. In recent years, numerous studies have

attempted to enumerate the number of equivalence classes of all small covers over a

specific polytope. In [6], Garrison and Scott used a computer program to determine the
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number of homeomorphism classes of all small covers over a dodecahedron. Cai,Chen

and Lü calculated the number of equivariant diffeomorphism classes of small covers over

prisms [1]. Choi determined the number of equivariant homeomorphism classes of small

covers over cubes [3]. However, there are few results about orientable small covers. Choi

calculated the number of D-J equivalence classes of orientable small covers over cubes

[4]. Cao and Lü showed that the cohomological rigidity holds for all small covers over

prisms and they calculated the number of homeomorphism types for all small covers

over prisms [2].

By P 2(m) we denote a m-gon. Let P 3(m) be a m-sided prism(i.e., the product of P 2(m)

and [0,1]). The main results are stated as follows.

Theorem 1.1 : The number of homeomorphism classes of all orientable small covers

over P 3(m) is 
2, if m = 4,

3, if m is even and m 6= 4,

1, if m is odd.

Theorem 1.2 : The number of homeomorphism classes of all orientable small covers

over P 2(m) is {
1, if m is even,

0, if m is odd.

The paper is organized as follows. In Section 2, we review the basic theory about small

covers and some results about cohomological rigidity for small covers over prisms. In

Section 3, we first reduce orientable colorings on a prism P 3(m) to canonical forms,

then using cohomological rigidity for small covers over prisms to distinguish them and

finally prove Theorem 1.1 and Theorem 1.2.

2. Preliminaries

2.1. Orientable Colorings

An n-dimensional convex polytope Pn is said to be simple, if exactly n faces of codi-

mension one meet at each of its vertices. A closed n-manifold Mn is said to be a small

cover if it admits an effective (Z2)n−action, which is locally isomorphic to the standard

action of (Z2)n on Rn, and the orbit space of the action is a simple convex polytope Pn.

Suppose that π : Mn → Pn is a small cover over a simple convex polytope Pn. Let

F(Pn) = {F1, · · · , Fl} be the set of codimension-one faces (facets) of Pn. Then there are
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l connected submanifolds M1, · · · ,Ml determined by π and Fi (i.e.,Mi = π−1(Fi)). Each

submanifold Mi is fixed pointwise by the Z2−subgroup Gi of (Z2)n, so that each facet

Fi corresponds to the Z2−subgroup Gi. Obviously, such the Z2−subgroup Gi actually

agrees with an element νi in (Z2)n as a vector space. For each face F of codimension u,

since Pn is simple, there are u facets Fi1 , · · · , Fiu such that F = Fi1 ∩ · · · ∩ Fiu . Then,

the corresponding characteristic submanifolds Mi1 , · · · ,Miu intersect transversally in

the (n− u)-dimensional submanifold π−1(F ), and the isotropy subgroup GF of π−1(F )

is a subtorus of rank u and is generated by Gi1 , · · · , Giu (or is determined by νi1 , · · · , νiu
in (Z2)n). Thus, this actually gives a characteristic function (see [5])

λ : F(Pn) −→ (Z2)n

defined by λ(Fi) = νi such that for any face F = Fi1 ∩· · ·∩Fiu of Pn, λ(Fi1), · · · , λ(Fiu)

are linearly independent in (Z2)n. If we regard each nonzero vector of (Z2)n as being

a color, then the characteristic function λ means that each facet is colored by a color.

Thus, we also call λ a (Z2)n-coloring on Pn here.

Davis and Januszkiewicz [5] gave a reconstruction process of Mn by using the (Z2)n-

coloring λ and the product bundle (Z2)n×Pn over Pn, so that all small covers over Pn

are classified in terms of all (Z2)n-colorings on F(Pn). By Λ(Pn) we denote the set of

all (Z2)n-colorings on Pn. Then we have

Theorem 2.1 (Davis-Januszkiewicz) : Let π : Mn → Pn be a small cover over a

simple convex polytope Pn. Then all small covers over Pn are given by {M(λ)|λ ∈
Λ(Pn)}.
Nakayama and Nishimura [7] found an orientability condition for a small cover.

Theorem 2.2 : For a basis {e1, · · · , en} of (Z2)n, a homomorphism ε : (Z2)n −→ Z2 =

{0, 1} is defined by ε(ei) = 1(i = 1, · · · , n). A small cover M(λ) over a simple convex

polytope Pn is orientable if and only if there exists a basis {e1, · · · , en} of (Z2)n such

that the image of ελ is {1}.
We call a (Z2)n-coloring which satisfies the orientability condition in Theorem 2.2 an

orientable coloring of Pn. In case n=2, it is easy to see that an orientable coloring of

a polygon P 2 is just a 2-coloring of P 2 (i.e.,P is colored by two colors). In case n=3,

a three-dimensional small cover M(λ) over P 3 is orientable if and only if there exists

a basis {α, β, γ} of (Z2)3 such that the image of λ is contained in {α, β, γ, α + β + γ}.
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Since each triple of {α, β, γ, α + β + γ} is linearly independent, the orientable coloring

of a 3-polytope P 3 is just a 4-coloring of P 3. By the four color theorem, we have the

following lemma.

Lemma 2.3 : There exists an orientable small cover over every simple convex 3-

polytope.

Remark : Generally speaking, we can’t make sure that there always exist small covers

over a simple convex polytope Pn when n ≥ 4. For example, see [5, Nonexample 1.22].

By O(Pn) we denote the set of all orientable colorings on Pn. There is a natural action

of GL(n,Z2) on O(Pn) defined by the correspondence λ 7−→ σ ◦ λ, and the action on

O(Pn) is free. Two small covers M1 and M2 over Pn are said to be Davis-Januszkiewicz

equivalent (or simply, D-J equivalent) if there is an automorphism ϕ : (Z2)n → (Z2)n

and a homeomorphism f : M1 →M2 such that f(t · x) = ϕ(t) · f(x) for every t ∈ (Z2)n

and x ∈M1 and f covers the identity on Pn. We can see that two orientable small covers

M(λ1) and M(λ2) over Pn are D-J equivalent if and only if there is σ ∈ GL(n,Z2) such

that λ1 = σ ◦ λ2.

2.2. Stanley-Reisner Face Ring and Ordinary Cohomology

Let Pn be a simple convex polytope with F(Pn) = {F1, · · · , Fl}. Following [5], the

Stanley-Reisner face ring of Pn over Z2, denoted Z2(Pn), is defined as follows:

Z2(Pn) = Z2[F1, · · · , Fl]/I

where the F ,is are regarded as indeterminates of degree one, and I is a homogenous ideal

generated by all square free monomials of the form Fi1 , · · · , Fis with Fi1
⋂
· · ·

⋂
Fis = ∅.

Let π : Mn → Pn be a small cover over a simple convex polytope Pn with F(Pn) =

{F1, · · · , Fl}, and λ : F(Pn) −→ (Z2)n its (Z2)n-coloring. Now we extend λ : F(Pn) −→
(Z2)n to a linear map λ̃ : (Z2)l −→ (Z2)n by replacing {F1, · · · , Fl} by the basis

{e1, · · · , el} of (Z2)l. Then λ̃ : (Z2)l −→ (Z2)n is surjective, and λ̃ can de regarded

as an n× l-matrix (λij), which is written as follows:

{λ(F1), · · · , λ(Fl)}.

One knows that H1(BZl2; Z2) = H1(EZn2 ×Zn
2
Mn; Z2) = Zl2 and H1(BZn2 ; Z2) = Zn2 . So

we have that p∗ : H1(EZn2 ×Zn
2
Mn; Z2) −→ H1(BZn2 ; Z2) can be identified with λ̃ :

(Z2)l −→ (Z2)n, where p : EZn2 ×Zn
2
Mn −→ BZn2 is the fibration of the Borel con-
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struction associating to the universal principal Zn2 -bundle EZn2 −→ BZn2 . Further-

more, p∗ : H1(BZn2 ; Z2) −→ H1(EZn2 ×Zn
2
Mn; Z2) is identified with the dual map

λ̃∗ : Zn∗2 −→ Zl∗2 , where λ̃∗ = λ̃T as matrices. Therefore, column vectors of λ̃∗ can be un-

derstood as linear combinations of F1, · · · , Fl in the face ring Z2(Pn) = Z2[F1, · · · , Fl]/I.

Write

λi = λi1F1 + · · ·+ λilFl.

Let Jλ be the homogeneous ideal (λ1, · · · , λn) in Z2[F1, · · · , Fl]. Davis and Januszkiewicz

calculated the ordinary cohomology of Mn, which is stated as follows.

Theorem 2.4 (Davis-Januszkiewicz) : Let π : Mn → Pn be a small cover over a

simple convex polytope Pn. Then its ordinary cohomology

H∗(Mn; Z2) ∼= Z2[F1, · · · , Fl]/I + Jλ.

2.3. Cohomological Rigidity for Small Covers Over Prisms

In [2], X. Cao and Z. Lü introduced sector method to obtain the following result:

Theorem 2.5 : Two orientable small covers M(λ1) and M(λ2) over P 3(m) are home-

omorphic if and only if their cohomologies H∗(M(λ1); Z2) and H∗(M(λ2); Z2) are iso-

morphic as rings.

By c and f we denote the top and bottom facets of P 3(m) respectively, and by s1, · · · , sm
we denote all sided facets of P 3(m) in their general order. An orientable coloring on

P 3(m) will simply be described as a sequence by writing its sided facet colorings in

order.

Definition 2.6 : An orientable coloring λ on P 3(m) is said to be 2-independent if all

λ(si), i = 1, · · · ,m, span a 2-dimensional subspace of (Z2)3; otherwise it is said to be

3-independent. If λ(c) = λ(f), then λ is said to be trivial; otherwise nontrivial.

Applying two sectors to the trivial orientable coloring λ, Cao and Lü give the follow-

ing two operations on its coloring sequence (λ(s1), · · · , λ(sm)) without changing the

homeomorphism type and orientability of the small cover constructed from λ:

O1 Take two sided facets si, sj(i < j) with the same coloring and then reflect the

coloring sequence of si, si+1, · · · , sj .

O2 Take si, sj(i < j) with λ(si), λ(sj), λ(c)(i.e.λ(f)) independent, then reflect the col-

oring sequence of si, si+1, · · · , sj and do a linear transform (λ(si), λ(sj), λ(c)) −→
(λ(sj), λ(si), λ(c)) to change the reflected coloring sequence.
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By applying these two operations on the coloring sequence (λ(s1), · · · , λ(sm)), we can re-

duce a colored polytope (P 3(m), λ) to (P 3(m), λ′). In this case, (P 3(m), λ) and (P 3(m), λ′)

are said to be sector-equivalent.

3. The Number of Orientable Small Covers

First let us consider the case in which the simple convex polytope is a prism P 3(m).

The argument is divided into two cases: (I) λ is trivial; (II) λ is nontrivial.

3.1. Trivial Orientable Colorings

Let {e1, e2, e3} be a basis of (Z2)3. Given a colored polytope (P 3(m), λ), throughout

suppose that λ is trivial with λ(c) = λ(f) = e1. We have

Lemma 3.1 : If the trivial orientable coloring λ is 2-independent, then m is even

and λ is sector-equivalent to the canonical form λC1 with the coloring sequence C1 =

(e2, e3, · · · , e2, e3).

Proof : Since the trivial orientable coloring λ is 2-independent, we only can choose

two colors from {e2, e3, e1 + e2 + e3} up to D-J equivalence. So λ is unique up to D-J

equivalence and m is even.

Next we consider the case in which λ is 3-independent.

Lemma 3.2 : If the trivial orientable coloring λ is 3-independent, then when m

is even, λ is sector-equivalent to λC2 with the coloring sequence C2 = (e1 + e2 +

e3, e2, e3, e2, · · · , e3, e2) and when m is odd, λ is sector-equivalent to λC3 with the col-

oring sequence C3 = (e1 + e2 + e3, e2, e3, · · · , e2, e3).

Proof : Since λ is 3-independent, e2, e3, e1 + e2 + e3 must wholly appear in its coloring

sequence up to D-J equivalence. One may assume that the time number r of e1 +e2 +e3

appearing in the coloring sequence of λ is less than m
2 up to D-J equivalence. By the

definition of λ, we easily see that any two e1 + e2 + e,3s in the coloring sequence cannot

become neighbors. Let e1 + e2 + e3, x1, · · · , xr, e1 + e2 + e3, y with xi, y 6= e1 + e2 + e3

be a subsequence of the coloring sequence. If r > 1, we proceed as follows:

(1) when x1 = y, by doing the operation O1 on x1, · · · , xr, e1 + e2 + e3, y, we may only

change the subsequence e1+e2+e3, x1, · · · , xr, e1+e2+e3, y into e1+e2+e3, y, e1+

e2 + e3, xr, · · · , x1 in the coloring sequence, and the value of r is unchanged.

(2) when x1 6= y, with no loss suppose that x1 = e2, y = e3 and x1, y, e1 are linearly
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independent. Then by doing the operation O2 on x1 = e2, x2, · · · , xr, e1 + e2 +

e3, y = e3, we may only change the subsequence e1 + e2 + e3, e2, x2, · · · , xr, e1 +

e2 + e3, e3 into e1 + e2 + e3, e2, e1 + e2 + e3, x
′
r, · · · , x′2, e3 with x′i 6= e1 + e2 + e3,

and the value of r is unchanged.

Thus, we may reduce the orientable coloring λ to another orientable coloring with the

following coloring sequence

(e1 + e2 + e3, y1, e1 + e2 + e3, y2, · · · , e1 + e2 + e3, ys−1, e1 + e2 + e3, ys, z1, · · · , zm−2s)

with m− 2s > 0. (3.1)

With no loss, one may assume that ys−1 = e2. If ys = e3, by doing the operation O2 on

e1 + e2 + e3, ys−1, e1 + e2 + e3, ys, one may change e1 + e2 + e3, ys−1, e1 + e2 + e3, ys into

e1 + e2 + e3, ys, ys−1, , ys. Thus the coloring sequence (3.1) can be reduced to (e1 + e2 +

e3, y1, e1+e2+e3, y2, · · · , e1+e2+e3, ys−2, e1+e2+e3, ys, ys−1, , ys, z1, · · · , zm−2s). If ys 6=
e3, then ys = e2. By doing the operation O2 on e1 +e2 +e3, ys−1, e1 +e2 +e3, ys, z1(z1 =

e3), one may change e1 + e2 + e3, ys−1, e1 + e2 + e3, ys, z1 into e1 + e2 + e3, ys, z1, ys−1, z1.

So we have managed to reduce the number r of e1 + e2 + e,3s by 1. We continue this

process until we reach s = 1.

Thus, when m is even, up to D-J equivalence λ is unique, as desired. When m is odd,

the situation is similar.

3.2. Nontrivial Orientable Colorings

Here let {e1, e2, e3} be also a basis of (Z2)3. Given a colored polytope (P 3(m), λ),

throughout suppose that λ is nontrivial, i.e. λ(c) 6= λ(f). Without loss of generality,

suppose λ(c) = e1 and λ(f) = e2. We have

Lemma 3.3 : Let λ be a nontrivial orientable coloring on P 3(m). Then m is even and λ

is sector-equivalent to λC4 with the coloring sequence C4 = (e3, e1 + e2 + e3, · · · , e3, e1 +

e2 + e3).

Proof : Since λ is a nontrivial orientable coloring, it is easy to see that λ is unique up

to D-J equivalence and m is even.

So when m is odd, there is only a homeomorphism class of orientable small covers over

P 3(m). And when m is even, there are 3 homeomorphism classes of orientable small

covers over P 3(m) at most. Below we use cohomological rigidity for small covers over

prisms to distinguish three canonical forms λC1 , λC2 and λC4 .

Given a colored polytope (P 3(m), λ), we knows that the mod 2 cohomology ring of
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M(λ) is

H∗(M(λ); Z2) = Z2[c, f, s1, · · · , sm]/I + Jλ

where I is the ideal generated by cf and sisj with si
⋂
sj = ∅, and Jλ is the ideal gener-

ated by three linear relations (determined by the 3×(m+2) matrix (λ(c), λ(f), λ(s1), · · · ,
λ(sm))).

Lemma 3.4 : When m 6= 4, arbitrary two small covers of M(λC1),M(λC2) and M(λC4)

aren’t homeomorphic.

When m = 4, M(λC1) and M(λC2) are’t homeomorphic and M(λC1) and M(λC4) are’t

homeomorphic, but M(λC2) and M(λC4) are homeomorphic.

Proof : First we consider the case m 6= 4. f2 = c2 = 0 in H∗(M(λC1); Z2), but f2, c2 6=
0 in H∗(M(λC2); Z2), so H∗(M(λC1); Z2) and H∗(M(λC2); Z2) aren’t isomorphic as

rings. Therefore, by Theorem 2.5, M(λC1) and M(λC2) are’t homeomorphic.

In H∗(M(λC1); Z2)
∑

i is odd

si =
∑

i is even
si = 0, but

∑
i is odd

si 6= 0 and
∑

i is even
si 6= 0 in

H∗(M(λC4); Z2), thus H∗(M(λC1); Z2) and H∗(M(λC4); Z2) aren’t isomorphic as rings.

So M(λC1) and M(λC4) are’t homeomorphic.

In H∗(M(λC2); Z2) f2, c2 6= 0, but f2 = c2 = 0 in H∗(M(λC4); Z2), so H∗(M(λC2); Z2)

and H∗(M(λC4); Z2) aren’t isomorphic as rings. Therefore, M(λC2) and M(λC4) are’t

homeomorphic.

In the similar way, we also can give the proof of the case m=4.

Combining Lemma 3.1-3.4, we give the proof of Theorem 1.1.

Finally, we consider the case in which the simple convex polytope is a m-gon P 2(m). Let

e1, e2 be a basis of (Z2)2. Here an orientable coloring on P 2(m) will be also described

as a sequence by writing its edge colorings in order.

The proof of Theorem 1.2 : One knows that an orientable coloring of P 2(m) is just

a 2-coloring of P 2(m). Thus when m is odd, there aren’t orientable colorings on P 2(m)

and there aren’t orientable small covers over P 2(m) .

When m is even, it is easy to see that up to D-J equivalence, the orientable coloring λ is

unique and sector-equivalent to λC5 with the coloring sequence C5 = (e1, e2, · · · , e1, e2).

Thus, there is only an orientable small cover over P 2(m) up to homeomorphism.
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