International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 65-71

BOUNDARY SET ON SOFT BIMINIMAL SPACES

R. GOWRI ${ }^{1}$ AND S. VEMBU ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India
E-mail: gowrigck@rediffmail.com
${ }^{2}$ Research Scholar, Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India E-mail: vembuchandrasekaran@gmail.com

Abstract

The aim of this paper is to introduce the concept of some fundamental properties of boundary set on soft biminimal spaces.

1. Introduction

In 2000, V. Popa and T. Noiri [14] introduced the concepts of minimal structure (briefly m-structure). They also introduced the concepts of m_{X}-open set and m_{X}-closed set and characterize those sets using m_{X}-closure and m_{X}-interior operators respectively. J.C. Kelly [7] defined the study of bitopological spaces in 1963. In 2010, C. Boonpok [2] introduced the concept of biminimal structure space and studied $m_{X}^{1} m_{X}^{2}$-open sets and $m_{X}^{1} m_{X}^{2}$-closed sets in biminimal structure spaces. Russian researcher Molodtsov [5], initaited the concept of soft sets as a new mathematical tool to deal with uncertainties

Key Words : Soft minimal, Soft biminimal space, Boundary.
(c) http: //www.ascent-journals.com
while modeling problems in engineering physics, computer science, economics, social sciences and medical sciences in 1999. In 2015, R. Gowri and S. Vembu [11] introduced Soft minimal and soft biminimal spaces. In this paper, we introduce the concept of boundary set on soft biminimal spaces and some of their simple properties.

2. Preliminaries

Definition 2.1 [11] : Let X be an initial universe set, E be the set of parameters and $A \subseteq E$. Let F_{A} be a nonempty soft set over X and $\tilde{P}\left(F_{A}\right)$ is the soft power set of F_{A}. A subfamily \tilde{m} of $\tilde{P}\left(F_{A}\right)$ is called a soft minimal set over X if $F_{\emptyset} \in \tilde{m}$ and $F_{A} \in \tilde{m}$. $\left(F_{A}, \tilde{m}\right)$ or (X, \tilde{m}, E) is called a soft minimal space over X. Each member of \tilde{m} is said to be \tilde{m}-soft open set and the complement of an \tilde{m}-soft open set is said to be \tilde{m}-soft closed set over X.

Definition 2.2 [11] : Let X be an initial universe set and E be the set of parameters. Let $\left(X, \tilde{m}_{1}, E\right)$ and $\left(X, \tilde{m}_{2}, E\right)$ be the two different soft minimals over X . Then $\left(X, \tilde{m_{1}}, \tilde{m_{2}}, E\right)$ or $\left(F_{A}, \tilde{m_{1}}, \tilde{m_{2}}\right)$ is called a soft biminimal spaces.
Definition 2.3 [11] : A soft subset F_{B} of a soft biminimal space ($F_{A}, \tilde{m}_{1}, \tilde{m}_{2}$) is called $\tilde{m}_{1} \tilde{m}_{2}$-soft closed if $\tilde{m} c l_{1}\left(\tilde{m} c l_{2}\left(F_{B}\right)\right)=F_{B}$. The complement of $\tilde{m}_{1} \tilde{m}_{2}$-soft closed set is called $\tilde{m}_{1} \tilde{m}_{2}$-soft open.

Proposition 2.4 [11] : Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space over X . Then F_{B} is a $\tilde{m}_{1} \tilde{m}_{2}$-soft open soft subsets of $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ if and only if $F_{B}=\tilde{m} \operatorname{Int} t_{1}\left(\tilde{m} I n t_{2}\left(F_{B}\right)\right)$.
Definition 2.5 [5] : Let U be an initial universe and E be a set of parameters. Let $P(U)$ denote the power set of U and A be a nonempty subset of E . A pair (F, A) is called a soft set over U , where F is a mapping given by $F: A \rightarrow P(U)$.
In other words, a soft set over U is a parametrized family of subsets of the universe U . For $\epsilon \in A . F(\epsilon)$ may be considered as the set of ϵ - approximate elements of the soft set (F, A). Clearly, a soft set is not a set.
Example 2.6 [5]: Let $U=\left\{u_{1}, u_{2}\right\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{x_{1}, x_{2}\right\} \subseteq E$ and $F_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$. Then
$F_{A_{1}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}$,
$F_{A_{2}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right)\right\}$,
$F_{A_{3}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right)\right\}$,
$F_{A_{4}}=\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}$,

$$
\begin{aligned}
& F_{A_{5}}=\left\{\left(x_{2},\left\{u_{2}\right\}\right)\right\}, \\
& F_{A_{6}}=\left\{\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}, \\
& F_{A_{7}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}, \\
& F_{A_{8}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}, \\
& F_{A_{9}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}, \\
& F_{A_{10}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}, \\
& F_{A_{11}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}, \\
& F_{A_{12}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}, \\
& F_{A_{13}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}, \\
& F_{A_{14}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}, \\
& F_{A_{15}}=F_{A}, \\
& F_{A_{16}}=F_{\emptyset} .
\end{aligned}
$$

are all soft subsets of F_{A}. so $\left|\tilde{P}\left(F_{A}\right)\right|=2^{4}=16$.

3. Boundary Set On Soft Biminimal Spaces

In this section, we introduce the concept and study some fundamental properties of boundary set on soft biminimal spaces.
Definition 3.1: Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS), F_{B} be a soft subset of F_{A} and $x \in F_{A}$. Then x is called $\tilde{m}_{1} \tilde{m}_{2}$-boundary point of F_{B} if $x \in$ $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)$. We denote the set of all $\tilde{m}_{1} \tilde{m}_{2}$-boundary point of F_{B} by $\tilde{m} B d r_{i j}\left(F_{B}\right)$ where $i, j=1,2$, and $i \neq j$. From definition we have $\tilde{m} B d r_{i j}\left(F_{B}\right)=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)$.
Example 3.2: Let $X=\left\{u_{1}, u_{2}\right\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{x_{1}, x_{2}\right\} \subseteq E$ and $F_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$. Then

$$
F_{A_{1}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{2}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right)\right\},
$$

$$
F_{A_{3}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right)\right\}
$$

$$
F_{A_{4}}=\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{5}}=\left\{\left(x_{2},\left\{u_{2}\right\}\right)\right\}
$$

$$
F_{A_{6}}=\left\{\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\},
$$

$$
F_{A_{7}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}
$$

$$
F_{A_{8}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\},
$$

$$
\begin{aligned}
& F_{A_{9}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\} \\
& F_{A_{10}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\} \\
& F_{A_{11}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\} \\
& F_{A_{12}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\} \\
& F_{A_{13}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\} \\
& F_{A_{14}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\} \\
& F_{A_{15}}=F_{A} \\
& F_{A_{16}}=F_{\emptyset} \text { are all soft subsets of } F_{A}
\end{aligned}
$$

$\tilde{m_{1}}=\left\{F_{\emptyset}, F_{A}, F_{A_{8}}, F_{A_{10}}\right\}$ and $\tilde{m_{2}}=\left\{F_{\emptyset}, F_{A}, F_{A_{1}}, F_{A_{12}}\right\}$.
Hence, $\tilde{m} B d r_{12}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}, \tilde{m} B d r_{21}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)=F_{A}$ and $\tilde{m} B d r_{12}\left(\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right)=F_{A}=\tilde{m} B d r_{21}\left(\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right)$
Theorem 3.3 : Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space. Let F_{B} be a soft subset of F_{A}. Then $\tilde{m} B d r_{i j}\left(F_{B}\right)=\tilde{m} B d r_{i j}\left(F_{A}-F_{B}\right)$ where $i, j=1,2$, and $i \neq j$
Proof : $\tilde{m} B d r_{i j}\left(F_{B}\right)=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)$

$$
\begin{aligned}
& =\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-\left(F_{A}-F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)\right) \\
& =\tilde{m} B d r_{i j}\left(F_{A}-F_{B}\right)
\end{aligned}
$$

Theorem 3.4: Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space and F_{B}, F_{C} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j$, Then the following are true.
i) $\tilde{m} B d r_{i j}\left(F_{B}\right)=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)$
ii) $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)=F_{\emptyset}$
iii) $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)=F_{\emptyset}$
iv) $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=\tilde{m} B d r_{i j}\left(F_{B}\right) \cup \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)$
v) $F_{A}=\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \cup \tilde{m} B d r_{i j}\left(F_{B}\right) \cup \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)$ is a pairwise disjoint union
vi) $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=\tilde{m} B d r_{i j}\left(F_{B}\right) \cup F_{B}$.

Proof :

(i) $\tilde{m} B d r_{i j}\left(F_{B}\right)=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)$

$$
\begin{aligned}
& =\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap\left(F_{A}-\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right) \\
& =\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)
\end{aligned}
$$

(ii) $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)$

$$
\begin{aligned}
& =\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right] \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \\
& =F_{\emptyset}
\end{aligned}
$$

iii) $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)$

$$
\begin{aligned}
& \left.=\tilde{m} B d r_{i j}\left(F_{A}-F_{B}\right)\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right) \\
& =F_{\emptyset}
\end{aligned}
$$

iv) $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$

$$
\begin{aligned}
& =\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right] \cup \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \\
& =\tilde{m} B d r_{i j}\left(F_{B}\right) \cup \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)
\end{aligned}
$$

v) $\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \cup \tilde{m} B d r_{i j}\left(F_{B}\right) \cup \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)$
$=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cup\left[F_{A}-\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)\right]$
$=F_{A}$.

By (ii) and (iii) $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)=F_{\emptyset}$ and $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)=F_{\emptyset}$ Now, $\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \cap \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right) \subseteq F_{B} \cap\left(F_{A}-F_{B}\right)$

$$
=F_{\emptyset}
$$

Therefore $F_{A}=\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \cup \tilde{m} B d r_{i j}\left(F_{B}\right) \cup \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)$ is a pairwise disjoint union.

$$
\text { vi) } \begin{aligned}
\tilde{m} B d r_{i j}\left(F_{B}\right) \cup F_{B} & =\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)\right] \cup F_{B} \\
& =\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cup F_{B}\right] \cap\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right) \cup F_{B}\right] \\
& =\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap\left(\left[F_{A}-\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right] \cup F_{B}\right) \\
& =\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap F_{A} \\
& =\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)
\end{aligned}
$$

Theorem 3.5 : Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a SBMS and F_{B} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j$. Then
i) F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$ - soft closed if and only if $\tilde{m} B d r_{i j}\left(F_{B}\right) \widetilde{\subseteq} F_{B}$.
ii) F_{B} is $\tilde{m}_{i} \tilde{m}_{j^{-}}$soft open if and only if $\tilde{m} B d r_{i j}\left(F_{B}\right) \tilde{\subseteq}\left(F_{A}-F_{B}\right)$.

Proof :

i) Assume that F_{B} is $\tilde{m}_{i} \tilde{m}_{j^{-}}$soft closed,

Thus $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=F_{B}$.
Let $x \in \tilde{m} B d r_{i j}\left(F_{B}\right)$.
Then, $x \in \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)$
$\Longrightarrow x \in F_{B} \cap\left(\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)\right.$
$\Longrightarrow x \in F_{B}$
Therefore, $\tilde{m} B d r_{i j}\left(F_{B}\right) \tilde{\subseteq} F_{B}$.
Conversely, Let $\tilde{m} B d r_{i j}\left(F_{B}\right) \tilde{\subseteq} F_{B}$
Then $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap\left(F_{A}-F_{B}\right)=F_{\emptyset}$
Now, $\left(\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap\left(F_{A}-F_{B}\right)\right.$

$$
\begin{aligned}
& =\left(\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right) \cap\left(F_{A}-F_{B}\right)\right]\right. \\
& =\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right] \cap\left(F_{A}-F_{B}\right)\right. \\
& =\tilde{m} B d r_{i j}\left(F_{B}\right) \cap\left(F_{A}-F_{B}\right) \\
& =F_{\emptyset}
\end{aligned}
$$

Therefore $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \tilde{\subseteq} F_{B}$.
But $F_{B} \tilde{\subseteq} \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$.
Therefore $F_{B}=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$.
Hence F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$ - soft closed.
ii) Assume that F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$ - soft open.

Thus $\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)=F_{B}$.
Now, $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap F_{B}=\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right] \cap F_{B}$

$$
=\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash F_{B}\right] \cap F_{B}
$$

$$
=F_{\emptyset}
$$

Hence, $\tilde{m} B d r_{i j}\left(F_{B}\right) \tilde{\subseteq}\left(F_{A}-F_{B}\right)$.
Conversely, Let $\tilde{m} B d r_{i j}\left(F_{B}\right) \tilde{\subseteq}\left(F_{A}-F_{B}\right)$.
Thus $\tilde{m} B d r_{i j}\left(F_{B}\right) \cap F_{B}=F_{\emptyset}$.
That implies, $\left[\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right] \cap F_{B}=F_{\emptyset}$.
Since $F_{B} \tilde{\subseteq} \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$, we have $\left(F_{B} \backslash \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right) \cap F_{B}=F_{\emptyset}$.
But $\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right) \tilde{\subseteq} F_{B}$.
Hence, $F_{B}=\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)$.
F_{B} is $\tilde{m}_{i} \tilde{m}_{j^{-}}$soft open.
Theorem 3.6: Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a SBMS and F_{B} be a soft subsets of F_{A}. Then
$\tilde{m} B d r_{i j}\left(F_{B}\right)=F_{\emptyset}$ if and only if F_{B} is $\tilde{m}_{i} \tilde{m}_{j^{-}}$soft closed and $\tilde{m}_{i} \tilde{m}_{j}$ - soft open where $i, j=1,2$, and $i \neq j$
Proof: Let $\tilde{m} B d r_{i j}\left(F_{B}\right)=F_{\emptyset}$.
Thus by Theorem 3.5, we have F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$ - soft closed and $\tilde{m}_{i} \tilde{m}_{j}$ - soft open.
Conversely, let F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$ - soft closed and $\tilde{m}_{i} \tilde{m}_{j}$ - soft open.
Then $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=F_{B}$ and
$\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A}-F_{B}\right)\right)=F_{A}-F_{B}$
$\tilde{m} B d r_{i j}\left(F_{B}\right)=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}-F_{B}\right)\right)$.
$=F_{B} \cap\left(F_{A}-F_{B}\right)$
$=F_{\emptyset}$.

References

[1] Ittanagi B. M., Soft bitopological spaces, International Journal of Computer Applications, 107(7) (2014).
[2] Boonpok C., Biminimal structure spaces, International Mathematical Forum, 15(5) (2010), 703-707.
[3] Patty C. W., Bitopological spaces, Duke Math. J., 34 (1967), 387-392.
[4] Chen D., The Parametrization Reduction of Soft Set and its Applications, Comput. Math. Appl., 49 (2005), 757-763.
[5] Molodtsov D. A., Soft set theory first results. Comp. and Math. with App., 37 (1949), 19-31.
[6] Maki H., Rao K. C. and Nagoor Gani A., On generalized semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17-29.
[7] Kelly J. C., Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-81.
[8] Shabir M., Naz M., On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799.
[9] Cagman N., Enginoglu S., Soft set theory and uni-int decision making, European Journal of Operational Research 10.16/ j.ejor. 2010.05.004, (2010).
[10] Cagman N., Karatas S. and Enginoglu S., Soft Topology, Comput. Math. Appl., 62 (2011), 351-358.
[11] Gowri R., Vembu S., Soft minimal and soft biminimal spaces, Int Jr. of Mathematical Science and Appl., 5(2), 447-455.
[12] Sompong S., Sa-at Muangchan, Boundary set in biminimal structure spaces, Int. Journal of Math. Analysis, 5(7) (2011), 297-301.
[13] Noiri T. and Popa V., A generalized of some forms of g-irresolute functions, European J. of Pure and Appl. Math., 2(4) (2009), 473-493.
[14] Popa V., Noiri T., On M-continuous functions, Anal. Univ.Dunarea de JosGalati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18, 23 (2000), 31-41.

