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Abstract
This paper deals with a new method of forming a partial random permutation which
is based on coin tossing experiment and discusses the properties of random variable
associated with them.

1. Introduction

Permutations and Combinations have always played a significant role in many aspects

of Discrete Mathematics and Statistics. The foundation of probability theory rests on

these two important features. The study of random variables associated with randomly

constructed permutations continues to attract the attention of many researchers world-

wide.

In this article we propose a new method of forming a partial random permutation

which is based on coin tossing experiment and study the properties of random variable

associated with them. We describe the method in the next section.
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2. Description of Method

The permutation of n integers (1, 2, · · · , n) is denoted by π = (π1π2 · · ·πn).

The positions corresponding to the n integers (1, 2, · · · , n) can be represented as as

follows.

Position 1 2 · · · i i+ 1 i+ 2 · · · n

Integer ∗ ∗ · · · ∗ ∗ ∗ · · · ∗

The method of permutation generation depends upon the outcomes of an unbiased coin

which is tossed (n− 1) times.

If the first toss results in a head (H), we write 1 at the nth position whereas, if the first

toss results in a tail (T), we write 1 at the first position. The next vacant positions are

successively filled from the right or left end with the appropriate successive numbers

depending upon the outcomes at the successive trials i.e, whenever the outcome is head

(H), the number corresponding to that trial is written from the right end at the next

available vacant position whereas the vacant position from the left end is filled with the

appropriate successive number if the outcome is tail (T).

This process is followed for (n − 1) tosses. Finally, the last integer n is placed at the

last empty place.

Illustration :

Suppose n = 4 i.e we are interested in obtaining a random permutation of the integers

(1, 2, 3, 4). Here an unbiased coin is tossed three times. The possible outcomes of the

first three trials and the resulting permutation are presented below.

Sr. No. Outcome Position filled Resulting
Trial no. permutation
1 2 3 1 2 3 4

1 H H H 4 3 2 1 (4 3 2 1)
2 H H T 3 4 2 1 (3 4 2 1)
3 H T H 2 4 3 1 (2 4 3 1)
4 H T T 2 3 4 1 (1 2 3 4)
5 T T T 2 3 4 1 (1 2 3 4)
6 T T H 1 2 4 3 (1 2 4 3)
7 T H H 1 4 3 2 (1 4 3 2)
8 T H T 1 3 4 2 (1 3 4 2)
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In this case, the eight distinct permutations are as follows (4 3 2 1) , (3 4 2 1) , (2 4 3

1) , (2 3 4 1) , (1 2 3 4) , (1 2 4 3) , (1 4 3 2) , and (1 3 4 2).

Remark : It may be noted that for n = 4, we obtain 23 = 8 permutations. In general

for n integers (1, 2, · · · , n), the number of distinct permutations possible are 2n−1. Also,

the permutations obtained are equiprobable.

In the next section we define the random variable associated with the permutations and

obtain its probability distribution and other properties.

3. Probability Distribution of the Random Variable X

Let the random variable X denotes the position of the highest integer n in the permuta-

tion. Since the possible positions that the highest integer n can occupy are (1, 2, · · · , n),

X can range from 1, 2, · · · , n.

Theorem 1 : The probability distribution of the random variable X is given by

P (X = x) = p(x) =

 n− 1

x− 1

(1
2

)n−1

, x = 1, 2, · · · , n. (3.1)

Proof : The possible positions of the highest integer can be represented as follows:

Position 1 2 · · · (x− 1) x (x+ 1) · · · (n− 1) n
Integer ∗ ∗ · · · ∗ n ∗ · · · ∗ ∗

We use the following argument to find the probability of the highest integer occupying

position x.

The method of constructing the permutation involves writing the successive integers

from the left end whenever the outcome is tail (T) and filling the consecutive vacant

positions from the right end with successive integers whenever the outcome is head (H).

The highest integer n will occupy position x only if there are (x − 1) tails in (n − 1)

tosses. This also means that there should be (n− x) heads in these (n− 1) tosses.

Since the permutation generation method involves a coin tossing experiment , it is easy

to see that the random variable X follows Binomial distribution with parameters (n−1)

and 1
2 , with the origin shifted to 1.

i.e. X ∼ B

(
n− 1,

1
2

)
(with origin shifted to 1)
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Hence
P (X = x) = p(x)

=

 n− 1

x− 1

(1
2

)n−1
, ‘ x = 1, 2, · · · , n.

(3.2)

This proves Theorem 1.

Further, if we define X ′ = X − 1 then

X ′ ∼ B

(
n− 1,

1
2

)
, x′ = 0, 1, 2, · · · , n− 1

with
P (X ′ = x′) = p(x′)

=

 n− 1

x′

(1
2

)n−1
, x′ = 0, 1, 2, · · · , n− 1.

(3.3)

4. Moments of X

Using the fact that X ′ ∼ B
(
n− 1, 1

2

)
, x′ = 0, 1, 2, · · · , n − 1 and X ′ = X − 1, the

following results easily follow.

1. E[X] = n+1
2 (4.1)

2. V [X] = n−1
4 . (4.2)

The higher order moments can also be similarly obtained. We give below ex-

pressions for the third and fourth raw as well as central moments of the random

variable X.

3. The third raw moment of X is given by

E[X3] =
n3 + 6n2 + 3n− 2

8
(4.3)

4. The fourth raw moment of X is given by

E[X4] =
n4 + 10n3 + 15n2 − 10n

16
(4.4)

5. The third central moment of X is given by

µ3[X] = 0. (4.5)
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6. The fourth central moment of X is given by

µ4[X] =
3n2 − 8n+ 5

16
. (4.6)

5. Numerical Results

To study the nature of the distribution of X, numerical results were obtained using the

theoretical expressions for various values of n. As µ3[X] equals zero, the coefficient of

skewness (β1) equals zero for all values. We present the values of mean (µ′1), variance

(µ2), fourth central moment (µ4) and the coefficient of kurtosis (β2) for various values

of n in the following table.

Table 1 : Moments of X and Coefficient of kurtosis β2

n µ′1 µ2 µ4 β2

2 1.5000 0.2500 0.0625 1.0000
3 2.0000 0.5000 0.5000 2.0000
4 2.5000 0.7500 1.3125 2.3333
5 3.0000 1.0000 2.5000 2.5000
6 3.5000 1.2500 4.0625 2.6000
7 4.0000 1.5000 6.0000 2.6667
8 4.5000 1.7500 8.3125 2.7143
9 5.0000 2.0000 11.000 2.7500
10 5.5000 2.2500 14.0625 2.7778

It is evident from above table that E[X] as well as V [X] are increasing functions of

n. Also, coefficient of kurtosis (β2) increases with an increase in n. The distribution is

platykurtic for small values of n whereas it becomes mesokurtic as n increases.
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