International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. III (December, 2016), pp. 119-124

AN INEQUALITY FOR EMANANT IN COMPLEX PLANE

ROSHAN LAL

Department of Mathematics,
Govt. PG College Dakpathar,
Vikasnagar, Uttarakhand, India

Abstract

Let $p(z)$ be a polynomial of degree n and let α be any real or complex number, then the polar derivative or "emanant" of $p(z)$ denoted by $D_{\alpha} p(z)$, is defined as $$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)
$$

In this paper, we find a generalized result for emanant i.e. polar derivative of the polynomial $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n having no zeros in $|z|<k, k \geq 1$. Our results generalize and improve upon some earlier well known results proved in this direction.

1. Introduction and Statement Results

The following famous result is known as Bernstein [5] inequality.
Theorem A : If $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.1}
\end{equation*}
$$

Key Words : Polynomials, Polar derivative, Inequalities, Zeros, Maximum modulus. AMS Subject Classification : 30A10, 30C10, 30D15.

The result is sharp and equality holds in (1.1) for $p(z)=\lambda z^{n}, \lambda$ being a complex number. Inequality (1.1) can be sharpened if we restrict ourselves to the class of polynomials having no zeros in $|z|<1$. In this connection, the following result was conjectured by Erdös [8] and later verified by Lax [11].
Theorem B : If $p(z)$ is a polynomial of degree n having no zero in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

The result is sharp and equality holds in (1.2) for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.
Simple proofs of (1.2) were given by de-Bruijn [6], and later by Aziz and Mohammad [2].
Malik [12] considered the class of polynomials $p(z) \neq 0$ in $|z|<k, k \geq 1$ and proved the following generalization of Theorem B.
Theorem C : If $p(z)$ is a polynomial of degree n having no zero in the disk $|z|<k$, $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.3}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=(z+k)^{n}$.
Govil [9] improved upon Theorem C and proved the following result.
Theorem D : If $p(z)$ is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k}\left[\max _{|z|=1}|p(z)|-\max _{|z|=k}|p(z)|\right] . \tag{1.4}
\end{equation*}
$$

The result is sharp and equality holds for the polynomial $p(z)=(z+k)^{n}$.
Theorem C was generalized by Bidkham and Dewan [7], who proved the following result. Theorem E: If $p(z)$ is a polynomial of degree n such that it has no zero in $|z|<k$, $k \geq 1$, then for $1 \leq R \leq k$,

$$
\begin{equation*}
\max _{|z|=R}\left|p^{\prime}(z)\right| \leq n \frac{(R+k)^{n-1}}{(1+k)^{n}} \max _{|z|=1}|p(z)| . \tag{1.5}
\end{equation*}
$$

The result is best possible and extremal polynomial is $p(z)=\left(\frac{z+k}{1+k}\right)^{n}$.
Let α be a complex number. If $p(z)$ is a polynomial of degree n, then polar derivative of $p(z)$ with respect to point α, denoted by $D_{\alpha} p(z)$, is defined by

$$
\begin{equation*}
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) . \tag{1.6}
\end{equation*}
$$

Clearly $D_{\alpha} p(z)$ is a polynomial of degree $n-1$ and it generalizes the ordinary derivative (see Marden [13]) in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} p(z)}{\alpha}\right]=p^{\prime}(z) \tag{1.7}
\end{equation*}
$$

Laguerre [10] called the polynomial $D_{\alpha} p(z)$ the "emanant" of $p(z)$, Pölya and Szegö [14] called "the derivative of $p(z)$ with respect to the point α " and Marden [13] simply called "the polar derivative of $p(z)$ ". It is obviously of interest to obtain estimates concerning the growth of $D_{\alpha} p(z)$.
For the class of polynomials not vanishing in the disc $|z|<k, k \geq 1$, Aziz [1] proved the following result, which extends Theorem C to the polar derivative of $p(z)$.

Theorem \mathbf{F} : If $p(z)$ is a polynomial of degree n having no zeros in the disc $|z|<k$, $k \geq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq n\left(\frac{k+|\alpha|}{1+k}\right) \max _{|z|=1}|p(z)| \tag{1.8}
\end{equation*}
$$

The result is best possible and equality in (1.8) holds for the polynomial $p(z)=(z+k)^{n}$, with real $\alpha \geq 1$.
As a refinement of Theorem F, Aziz and Shah [3] proved the following result, which also extends Theorem D to the polar derivative of $p(z)$.
Theorem G: If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zero in $|z|<k$, $k \geq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n}{1+k}\left\{(|\alpha|+k) \max _{|z|=1}|p(z)|-(|\alpha|-1) \min _{|z|=k}|p(z)|\right\} \tag{1.9}
\end{equation*}
$$

The result is best possible and extremal polynomial is $p(z)=\left(\frac{z+k}{1+k}\right)^{n}$ for real $\alpha \geq k$. We prove the following result which in turn gives generalization of Theorem G. More precisely, we prove
Theorem 1 : If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$ and for $1 \leq r \leq k$, we have
$\max _{|z|=r}\left|D_{\alpha} p(z)\right| \leq n\left[\left.\frac{(|\alpha|+k)(r+k)^{n-1}}{(1+k)^{n}} \max _{|z|=1}|p(z)|-\left\{\frac{(|\alpha|+k)(r+k)^{n-1}}{(1+k)^{n}}-1\right\} \min _{|z|=k} \right\rvert\, p(z)\right]$.

If we put $r=1$ in (1.10), we get following result due to Aziz and Shah [3].

Corollary 2: If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zero in $|z|<k$, $l \geq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n}{1+k}\left\{(|\alpha|+k) \max _{|z|=1}|p(z)|-(|\alpha|-1) \min _{|z|=k}|p(z)|\right\} . \tag{1.11}
\end{equation*}
$$

The result is best possible and extremal polynomial is $p(z)=\left(\frac{z+k}{1+k}\right)^{n}$ for real $\alpha \geq k$. Dividing both sides of inequality (1.10) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we get the following result which is an improvement of Theorem E.
Corollary 3: If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$, then for $1 \leq r \leq k$,

$$
\begin{equation*}
\max _{|z|=r}\left|p^{\prime}(z)\right| \leq \frac{n(r+k)^{n-1}}{(1+k)^{n}}\left[\max _{|z|=1}|p(z)|-\min _{|z|=k} \mid p(z)\right] . \tag{1.12}
\end{equation*}
$$

The result is sharp and equality holds for the polynomial $p(z)=(z+k)^{n}$.

2. Lemmas

We need the following lemma due to Aziz and Zargar [4] to prove the Theorem 1.
Lemma 2.1: If $p(z)$ is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$, then for $1 \leq R \leq k^{2}, m=\min _{|z|=k}|p(z)|$, we have

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|p(z)|-\left\{\left(\frac{R+k}{1+k}\right)^{n}-1\right\} m . \tag{2.1}
\end{equation*}
$$

3. Proof of the Theorem

Proof of Theorem 1: Let $1 \leq r \leq k$. Since $p(z)$ has no zeros in $|z|<k, k \geq 1$, the polynomial $p(r z)$ has no zeros in $|z|<\frac{k}{r}, \frac{k}{r} \geq 1$, therefore applying Theorem G to the polynomial $p(r z)$ with $\frac{|\alpha|}{r} \geq 1$, we get

$$
\max _{|z|=1}\left|D_{\frac{\alpha}{r}} p(r z)\right| \leq \frac{n}{1+\frac{k}{r}}\left\{\left(\frac{|\alpha|}{r}+\frac{k}{r}\right) \max _{|z|=1}|p(r z)|-\left(\frac{\mid \alpha}{r}-1\right) \min _{|z|=\frac{k}{r}}|p(r z)|\right\},
$$

implies

$$
\begin{equation*}
\max _{|z|=1}\left|n p(r z)+\left(\frac{\alpha}{r}-z\right) r p^{\prime}(r z)\right| \leq \frac{n}{(k+r)}\left\{(|\alpha|+k) \max _{|z|=1}|p(r z)|-(|\alpha|-r) \min _{|z|=\frac{k}{r}}|p(r z)|\right\} . \tag{3.1}
\end{equation*}
$$

Inequality (3.1) is equivalent to

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n}{(k+r)}\left\{(|\alpha|+k) \max _{|z|=r}|p(z)|-(|\alpha|-r) \min _{|z|=k}|p(z)|\right\} . \tag{3.2}
\end{equation*}
$$

For $1 \leq r \leq k$, inequality (3.2) when combined with Lemma 2.1, gives

$$
\begin{aligned}
\max _{|z|=r}\left|D_{\alpha} p(z)\right| \leq & \frac{n}{(k+r)}\left[(| \alpha | + k) \left\{\left(\frac{r+k}{1+k}\right)^{n} \max _{|z|=1}|p(z)|\right.\right. \\
& \left.\left.-\left(\left(\frac{r+k}{1+k}\right)^{n}-1\right) m\right\}-(|\alpha|-r) m\right] \\
= & \frac{n}{(k+r)}\left[\frac{(|\alpha|+k)(r+k)^{n}}{(1+k)^{n}} \max _{|z|=1}|p(z)|\right. \\
& \left.-\left\{(\alpha \mid+k)\left(\left(\frac{r+k}{1+k}\right)^{n}-1\right)+(|\alpha|-r)\right\} m\right] \\
= & \frac{n}{(k+r)}\left[\frac{(|\alpha|+k)(r+k)^{n}}{(1+k)^{n}} \max _{|z|=1}|p(z)|\right. \\
& \left.-\left\{(\alpha \mid+k)\left(\frac{r+k}{1+k}\right)^{n}-(|\alpha|+k)+(|\alpha|-r)\right\} m\right] \\
= & n\left[\frac{(|\alpha|+k)(r+k)^{n-1}}{(1+k)^{n}} \max _{|z|=1}|p(z)|-\left\{\frac{(|\alpha|+k)(r+k)^{n-1}}{(1+k)^{n}}-1\right\} m\right] .
\end{aligned}
$$

From which is the required result follows.

Acknowledgement

The author is thankful to anonymous referee for valuable suggestions.

References

[1] Aziz A., Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55 (1988), 183-193.
[2] Aziz A. and Mohammad Q. G., Simple proofs of a Theorem of Erdös and Lax, Proc. Amer. Math. Soc., 80 (1980), 119-122.
[3] Aziz A. and Shah W. M., Inequalities for the polar derivative of a polynomial, Indian J. Pure. Appl. Math., 29 (1998), 163-173.
[4] Aziz A. and Zargar B. A., Inequalities for a polynomial and its derivative, Math. Inequal. Appl., 1(4) (1998), 543-550.
[5] Bernstein S., Lecons Sur Les Proprietes extrremales et la meillure approximation des functions analytiques d'une functions reele, Paris, (1926).
[6] de-Bruijn N. G., Inequalties concerning polyin the complex domain, Nederl. Akad. Wetench. Proc. Ser. A, 50 (1947), 1265-1272; Indag. Math., 9 (1947), 591-598.
[7] Dewan K. K. and Bidkham M., Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.
[8] Erdös P., On extremal properties of the derivative of polynomials, Ann. of Math., 41 (1940), 310-313.
[9] Govil N. K., Some inequalities for derivative of polynomials, J. Approx. Theory, 66 (1991), 29-35.
[10] Laguerre E., Oeuvres, 1Gauthier-villars, Paris, (1898).
[11] Lax P. D., Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
[12] Malik M. A., On the derivative of polynomial, J. London Math. Soc., 1 (1969), 57-60.
[13] Marden M., Geometry of polynomials, IInd ed., Math. Syrveys, N0-3, Amer. Math. Soc. Providence, R. I., (1966).
[14] Pölya G. and Szegö G., Problems and Theorems in Analysis, Vol 1, SpringlerVerlag, Berlin, (1972).

