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Abstract

An averaged Gauss-Legendre rule of precision 5 is constructed taking the average
of Gauss-Legendre two point rule and anti-Gauss three point rule of same precision,
i.e., precision 3. This can also be called a mixed quadrature rule as it is formed
by combining two rules of same lower precision. Also an adaptive integration algo-
rithm is designed taking this averaged Gauss-Legendre five point rule into account
and the adaptive integration scheme has been applied to evaluate some real definite
integrals in order to test its efficiency.

1. Introduction

Gaussian rules are one of the powerful and foremost quadrature rules in numerical
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analysis. It has been proved that Gaussian rules are better in comparison to classical

quadrature rules (Newton-Cotes). But this rule suffers from the drawback that as we

increase the nodes the new rules do not keep the nodes of the previous one except at

origin. So it becomes cumbersome to evaulate f(x) each time for higher order formula.

Keeping this difficulty in mind, Dirk P. Laurie (1996) [3] designed anti-Gauss quadrature

followed by averaged Gaussian quadrature. Some mixed rules based on anti-Gauss rule

have been developed by ([5], [4]). Let us discuss some of the basic features of anti-Gauss

quadrature.

1.1 Anti-Gauss Quadrature Rule

• An n + 1-point anti-Gauss rule has same degree of precision as that of n-point

Gaussian rule, i .e., precision 2n− 1.

• It integrates polynomial up to degree 2n+ 1 with an error equal in magnitude but

of opposite in sign to that of n-point Gaussian rule.

• Anti-Gaussian rules have positive weights.

• Nodes of the anti-Gaussian rules are interior and interlaced by those of corre-

sponding Gaussian formula.

Let us consider the integral

I(f) =

1∫
−1

f(x)dx ≈ RaGn+1(f) (1.1)

Furthermore, we can express (1.1) in the form

RaGn+1(f) =
n∑
i=0

wif(xi) (1.2)

where, wi’s are weights and xi’s are the distinct points (nodes) in the interval [−1, 1].

The error associated with the anti-Gauss n+1-point rule is I(f)−RaGn+1(f). The error

is equal to the negative of the error associated with Gauss-Legendre n-point rule. i .e.,

I(f)−RaGn+1(f) = − (I(f)−RGLn(f)) (1.3)

RaGn+1(f) = 2I(f)−RGLn(f) (1.4)
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1.2 Averaged Gaussian Quadrature Rule

An averaged Gauss-Legendre rule, proposed by Laurie [3] is a suboptimal extension of

the Gaussian rule. It is constructed by averaging two quadratures, i .e., Gaussian and

anti-Gaussian, of same order. The speciality of this rule is, it is of precision 2n + 1

where as Gaussian and anti-Gaussian are of precision 2n − 1. The averaged Gaussian

quadrature possesses the following characteristic features.

• A 2n + 1-point averaged Gaussian formula has degree of precision 2n + 1 and it

integrates polynomials up to degree 2n+ 1.

• Its error is the average of Gaussian rule and anti-Gaussian rule of same precision

i .e., precision 2n− 1.

• It always exists.

• Its nodes are real.

• At worst two nodes may be exterior.

• It has positive weights.

We can write

I(f) =

1∫
−1

f(x)dx ≈ RavgG2n+1(f) (1.5)

Unlike other mixed quadrature rules using anti-Gauss quadrature, in averaged Gaussian

rule we can get promptly a rule of precision 5 from the features of anti-Gauss quadrature

without using any lengthy process of calculation. This is the primary advantage of

averaged Gaussian rule. As we can see from equation (1.4)

2I(f) = RaGn+1(f) +RGLn(f) (1.6)

or

I(f) =
RaGn+1(f) +RGLn(f)

2
(1.7)

or

I(f)−RavgG2n+1 = 0, for f(x) = x2n+1 (1.8)
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i.e.,

EavgG2n+1(f) = 0, for f(x) = x2n+1 (1.9)

where

RavgG2n+1(f) =
RaGn+1(f) +RGLn(f)

2
= 2n+ 1-point averaged Gauss-Legendre rule

and

EavgG2n+1(f) = Error incurred in the 2n+ 1-point averged Gaussian rule (1.10)

The primary aim of this paper is to implement averaged Gauss-Legendre rule in adap-

tive environment by fixing up a termination criterion and also to prove its efficiency not

only in comparison to its constituent rules but also in comparison to some other mixed

rules in the literature. Also we have compared the results with the results obtained by

([2], [1]) by evaluating some test integrals.

2. Construction of the Averaged Gaussian Quadrature Rule of Preci-

sion Five

We choose the Gauss-Legendre two point rule

I(f) =

1∫
−1

f(x)dx ≈ RGL2(f) = f

(
− 1√

3

)
+ f

(
1√
3

)
(2.1)

and the anti-Gauss three point rule

I(f) =

1∫
−1

f(x)dx ≈ RaG3(f) =
1
13

[
5f

(
−
√

13
15

)
+ 16f(0) + 5f

(√
13
15

)]
(2.2)

Let EGL2(f) and EaG3(f) denote the error terms of the rules (2.1) and (2.2) respectively.

So

I(f) = RGL2(f) + EGL2(f) (2.3)

I(f) = RaG3(f) + EaG3(f) (2.4)

Now it is evident from [4] that the rules (2.1) and (2.2) are of precision 3.

Now adding the equations (2.3) and (2.4) and then dividing by 2 we get

I(f) =
1
2

[RGL2(f) + EGL2(f) +RaG3(f) + EaG3(f)] (2.5)
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or

I(f) =
1
2

[RGL2(f) +RaG3(f)] +
1
2

[EGL2(f) + EaG3(f)] (2.6)

or

I(f) = RavgGL5(f) + EavgGL5(f) (2.7)

where

RavgGL5(f) =
1
2

[RGL2(f) +RaG3(f)] (2.8)

and

EavgGL5(f) =
1
2

[EGL2(f) + EaG3(f)] (2.9)

This is the desired averaged 5-point Gaussian quadrature rule of precision five for ap-

proximate evaluation of I(f). The truncation error generated in this approximation is

given by

EavgGL5(f) = 1
2 [EGL2(f) + EaG3(f)]

= − 8
7!×675f

(vi)(0)− 8
9!×125f

(viii)(0)− 17296
11!×151875f

(x)(0)− · · ·
(2.10)

The rule (2.10) may be called as a mixed type rule as it is constructed from two different

types of rules of the same precision (i .e., precision 3).

3. Error Analysis

An asymptotic error estimate and error bound of the rule (2.6) are given in theorems

(3.1) and (3.2) respectively.

Theorem 3.1 : Let f(x) be a continuously differentiable function in the closed interval

[−1, 1]. Then the error EavgGL5(f) associated with the rule RavgGL5(f) is given by

|EavgGL5(f)| u 8
7!× 675

∣∣∣f (vi)(0)
∣∣∣

Proof : Follows directly from (2.8). 2

Theorem 3.2 : The bound of the truncation error EavgGL5(f)=I(f)−RavgGL5(f) is

|EavgGL5(f)| ≤ M

270
|η2 − η1| , η1, η2 ∈ [−1, 1]

where M = max
−1≤x≤1

∣∣∣f (v)(x)
∣∣∣
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Proof : We have

EaG3(f) ≈ − 1
135

f (iv)(η1), η1 ∈ [−1, 1]

EGL2(f) ≈ 1
135

f (iv)(η2), η2 ∈ [−1, 1]

Hence EavgGL5(f) =
1
2

[EaG3(f) + EGL2(f)]

≈ 1
270

[
f (iv)(η2)− f (iv)(η1)

]
=

1
270

η2∫
η1

f (v)(x)dx (assuming η1 < η2)

So we obtain, |EavgGL5(f)| =

∣∣∣∣∣∣ 1
270

η2∫
η1

f (v)(x)dx

∣∣∣∣∣∣ ≤ 1
270

η2∫
η1

∣∣∣f (v)(x)
∣∣∣ dx

So |EavgGL5(f)| ≤ M

270
|η2 − η1| , where M = max

−1≤x≤1

∣∣∣f (v)(x)
∣∣∣

which gives only a theoretical error bound as η1, η2 are unknown points in [−1, 1]. It

shows that the error in the approximation will be less if the points η1, η2 are closed to

each other. 2

Corollary 3.1 : The error bound for the truncation error EavgGL5(f) is given by

|EavgGL5(f)| ≤ M

135
, where M = max

−1≤x≤1

∣∣∣f (v)(x)
∣∣∣

Proof : we know from theorem (3.2) that

|EavgGL5(f)| ≤ M

270
|η2 − η1|

where M = max
−1≤x≤1

∣∣∣f (v)(x)
∣∣∣

choosing |η1 − η2| ≤ 2

we get |EavgGL5(f)| ≤ M

135

2

4. Algorithm for Adaptive Quadrature Routine

Applying the constituent rules RGL2(f), RaG3(f) and the 5-point averaged Gaussian

quadrature rule (RavgGL5(f)), one can evaluate real definite integrals of the type
b∫
a
f(x)dx
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in adaptive integration scheme. In the adaptive integration scheme, the desired accuracy

is sought by progressively subdividing the interval of integration according to the com-

puted behaviour of the integrand, and applying the same formula over each subinterval.

The algorithm for adaptive integration scheme is outlined using the mixed quadrature

rule (RavgGL5(f)) in the following four steps.

Input: Function f : [a, b]→ R and the prescribed tolerance ε.

Output: An approximation Q(f) to the integral I(f) =
b∫
a
f(x)dx such that |Q(f) −

I(f)| ≤ ε.
Step-1: The mixed quadrature rule (RavgGL5(f)) is applied to approximate the integral

I(f) =
b∫
a
f(x)dx. The approximated value is denoted by (RavgGL5 [a, b]).

Step-2: The interval of integration [a, b] is divided into two equal pieces; [a, c] and [c, b].

The mixed quadrature rule (RavgGL5(f)) is applied to approximate the integral I1(f) =
c∫
a
f(x)dx and the approximated value is denoted by (RavgGL5 [a, c]). Similarly, the mixed

quadrature rule (RavgGL5(f)) is applied to approximate the integral I2(f) =
b∫
c
f(x)dx

and the approximated value is denoted by (RavgGL5 [c, b]).

Step-3: (RavgGL5 [a, c])+(RavgGL5 [c, b]) is compared with (RavgGL5 [a, b]) to estimate the

error in (RavgGL5 [a, c]) + (RavgGL5 [c, b]).

Step-4: If | estimated error | ≤ ε

2
(termination criterion) then (RavgGL5 [a, c])+(RavgGL5 [c, b])

is accepted as an approximation to I(f) =
b∫
a
f(x)dx. Otherwise the same procedure

is applied to [a, c] and [c, b], allowing each piece a tolerance of
ε

2
. If the termination

criterion is not satisfied on one or more of the subintervals, then those subintervals must

be further subdivided and the entire process is repeated. When the process stops, the

addition of all accepted values yields the desired approximate value Q(f) of the integral

I(f) such that |Q(f)− I(f)| ≤ ε.
N.B : In this algorithm we can use any quadrature rule to evaluate real definite integrals

in adaptive integration scheme.
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5. Numerical Verification

Table 1 : Comparative study among the quadrature rules (RS3(f), RS4(f), RGL2(f),

RaG3(f)) for approximation of some real definite integrals without using adaptive

integration scheme

Approximate Value Q(f)
Integrals Exact Value RS3(f) RS4(f) RGL2(f) RaG3(f)
1∫
−1

exdx 2.350402387 2.362053 2.355648 2.342696 2.358113

1∫
0

e−x
2
dx 0.7468241330 0.747180 0.746992 0.746594 0.747054

1∫
0

ex
2
dx 1.46265174 1.4757 1.4687 1.4541 1.4711

3∫
1

sin2 x

x
dx 0.794825 0.7894 0.7926 0.7985 0.7911

2√
π

4∫
0

e−x
2
dx 1 0.8073 0.8516 1.1046 0.9024

1∫
0

e−x
3
dx 0.807511182 0.8163 0.81118 0.8014 0.8135

2π∫
0

e−x cosxdx 0.499066278634 0.8681 0.6239 0.2056 0.7855

3∫
1

100
x

sin
(

10
x

)
dx −18.798296836787 −84.179 −57.023 21.589 −59.973

1∫
0

√
x log xdx −0.4444444· · · −0.3267 −0.362004 −0.4626 −0.4285

1∫
0

√
x sinxdx 0.3642219 0.3662 0.365359 0.3632 0.365236

1∫
0

√
xdx 0.66666666· · · 0.638071 0.647692 0.673887 0.659834

5π
4∫
0

cos 2x
ex

dx 0.207881149 0.394651 0.200132 0.012295 0.400048

Note :

RS3(f): Simpson’s
1
3

rule

RS4(f): Simpson’s
3
8

rule

RGL2(f): Gauss-Legendre two point rule

RaG3(f): Anti-Gauss three point rule.
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Table 2 : Comparative study among the mixed quadrature rules and averaged

Gauss-Legendre rule (RS3GL2(f), RS4GL3(f) and RavgGL5(f)) for approximation of

some real definite integrals (given in Table-1) without using adaptive integration

scheme

Approximate Value Q(f)
Integrals Exact Value RS3GL2(f) RS4GL2(f) RavgGL5(f)
1∫
−1

exdx 2.350402387 2.350439 2.350467 2.35040491

1∫
0

e−x
2
dx 0.7468241330 0.7468289 0.7468332 0.74682435

1∫
0

ex
2
dx 1.46265174 1.462792 1.462895 1.462662

Approximate Value Q(f)
Integrals Exact Value RS3GL2(f) RS4GL2(f) RavgGL5(f)
3∫
1

sin2 x

x
dx 0.79482518 0.794916 0.794992 0.794830

2√
π

4∫
0

e−x
2
dx 1 0.9857 0.9528 1.0035

1∫
0

e−x
3
dx 0.807511182 0.80739 0.8072904 0.807504

2π∫
0

e−x cosxdx 0.499066278634 0.4706 0.4566 0.4956

3∫
1

100
x

sin
(

10
x

)
dx −18.798296836787 −20.718 −25.578 −19.191

1∫
0

√
x log xdx −0.4444444· · · −0.4083 −0.4022 −0.4456

1∫
0

√
x sinxdx 0.3642219 0.364432 0.364504 0.364228

1∫
0

√
xdx 0.66666666· · · 0.6595608 0.6581704 0.6668607

5π
4∫
0

cos 2x
ex

dx 0.207881149 0.165237 0.124997 0.206172

Note :

RS3GL2(f): Mixed quadrature rule by Simpson’s
1
3

Gauss-Legendre two point rule

RS4GL3(f): Mixed quadrature rule by Simpson’s
3
8

Gauss-Legendre three point rule

RavgGL5(f): Averaged Gaussian five point rule.
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Table 3 : Comparative study among the quadrature rules (RS3(f), RS4(f), RGL2(f),

RaG3(f)) for approximation of some real definite integrals using adaptive integration

scheme
Approximate Value Q(f)

Integrals RS3 (f) # RS4 (f) # RGL2 (f) # RaG3 (f) #
Steps Steps Steps Steps

1∫
0

ex
2
dx 1.462656321 7 1.46265378 7 1.462648697 7 1.462654794 7

3∫
1

sin2 x

x
dx 0.79482463 7 0.79482493 7 0.79482554 7 0.79482481 7

2
√
π

4∫
0

e−x
2
dx 1.00000181 19 1.000000179 13 1.00000349 15 0.99999647 15

1∫
0

e−x
3
dx 0.80751235 7 0.807511701 7 0.8075104 7 0.80751196 7

2π∫
0

e−x cosxdx 0.49906351 15 0.49906504 15 0.49906812 15 0.49906443 15

3∫
1

100

x
sin

(
10

x

)
dx −18.79829444 49 −18.79829026 45 −18.79829839 49 −18.79829523 49

1∫
0

√
x log xdx −0.4444125 17 −0.4444242 17 −0.4444629 15 −0.44442703 15

1∫
0

√
x sinxdx 0.36422523 7 0.36422962 5 0.36421433 5 0.364229601 5

1∫
0

√
xdx 0.6666434 13 0.666652007 13 0.6666831 11 0.6666509 11

5π
4∫
0

cos 2x

ex
dx 0.2078814173 19 0.20787598 15 0.207880968 19 0.207881329 19

Note : Here the prescribed tolerance ε=0.0001.

Table 4 : Comparative study among the mixed quadrature rules and averaged

Gaussian rule (RS3GL2(f), RS4GL3(f) and RavgGL5(f)) for approximation of some real

definite integrals (given in Table-3) using adaptive integration scheme

Approximate Value Q(f)
Integrals RS3GL2 (f) #Steps RS4GL2 (f) #Steps RavgGL5 (f) #Steps
1∫
0

ex
2
dx 1.4626518007 3 1.4626518431 3 1.462651963 1

3∫
1

sin2 x

x
dx 0.79482519 3 0.794825202 3 0.79482523 1

2
√
π

4∫
0

e−x
2
dx 0.999999984488 7 0.999999984481 7 1.0000000111 5

1∫
0

e−x
3
dx 0.8075111708 3 0.807511162 3 0.8075111237 1

2π∫
0

e−x cosxdx 0.49906601 7 0.499065801 7 0.499066314 5
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Approximate Value Q(f)
Integrals RS3GL2 (f) #Steps RS4GL2 (f) #Steps RavgGL5 (f) #Steps
3∫
1

100

x
sin

(
10

x

)
dx −18.79829768 15 −18.79829834 15 − 18.798298357 9

1∫
0

√
x log xdx −0.44442598 15 −0.4444226 15 −0.44447106 7

1∫
0

√
x sinxdx 0.36422856 3 0.364230857 3 0.364223157 1

1∫
0

√
xdx 0.66665278 11 0.66665005 11 0.66669091 3

5π
4∫
0

cos 2x

ex
dx 0.2078813092 7 0.2078814336 7 0.207881816 3

Note : Here the prescribed tolerance ε=0.0001.

#Steps: Number of steps.

6. Conclusion

From tables 1 and 2 we figured out that

1. the values of the integrals determined by averaged Gauss-Legendre five point rule

(RavgGL5(f)) approach to the exact values of the test integrals minimizing the

gap at a greater extent in comparison to those in case of its constituent rules

RGL2(f), RaG3(f) and also in comparison to the rules RS3(f), RS4(f) with out

using adaptive integration scheme.

2. also the mixed quadrature rules, RS3GL2(f), RS4GL2(f) [1, 5], that have been

developed previously are somehow less effective than averaged Gaussian five point

rule RavgGL5(f) in non-adaptive environment.

Tables 3 and 4 spelled out that

3. imposing adaptive quadrature routine to evaluate the integrals using averaged

Gauss-Legendre five point rule (RavgGL5(f)) is much more emphatic than deter-

mining the integrals by applying the rules RS3(f), RS4(f), RGL2(f), RaG3(f) so

far the number of steps is concerned.

4. supplementing to the above remark, we have also drawn another advantageous re-

mark that the averaged Gauss-Legendre five point rule RavgGL5(f) is much more
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competent and gave away encouraging results than those in case of other estab-

lished mixed quadrature rules RS3GL2(f), RS4GL2(f) so far the number of steps is

concerned using adaptive integration scheme.

A strong observation follows here, not only in comparison to some classical rules at a

same level of precision but also averaged Gauss-Legendre five point rule (RavgGL5(f))

is dominating over some of the mixed quadrature rules ([2], [1]) developed earlier, both

in adaptive and non adaptive integration scheme which is the basic notion behind this

paper.
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