
International J. of Math. Sci. & Engg. Appls. (IJMSEA)

ISSN 0973-9424, Vol. 10 No. III (December, 2016), pp. 205-212

ISOMORPHISM OF UNIDIRECTED PLANE GRAPHS USING

MARCOV CHAIN

DR. JITENDRA BINWAL
Associate Professor in Mathematics,

Department of Mathematics,
College of Arts, Science and Humanities (CASH),

Mody University, Lakshmangarh-332311,
District - Sikar (Rajasthan), India

Abstract

The graph isomorphism problem for undirected plane graphs is to determine whether
two given undirected plane graphs are isomorphic or not. The motivation behind
the isomorphism of undirected plane graphs is Marcov chain. In this paper, develop
and use probabilistic finite automaton approach for graph invariant [1, 4] called the
probability propagation matrix for isomorphism of undirected plane graphs having
six vertices by using the Marcov chain. It may be extended for ‘n’-number of ver-
tices where ‘n’ is a positive integer.

1. Introduction

The graph isomorphism problem is to determine if there exists a one-to-one correspon-

dence between the vertices of two graphs G1 and G2 that preserves the adjacency of
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vertices. Two undirected plane graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic

if there exists a one-to-one mapping π from V1 and V2 such that (x, y) ∈ E1) if and

only if (π(x), π(y)) ∈ E2. The problem of graph isomorphism arises many fields such as

chemistry, switching theory, information retrieval, and linguistics [3,5].

Theoretically, it is always possible to determine whether or not two undirected plane

graphs G1 and G2 are isomorphic by keeping G1 fixed and reordering vertices of G2

to check if their adjacency matrices become identical. This process may require all

(n)! reordering and comparisons, 1n’ being the number of vertices. Such an inefficient

procedure, in which the running time grows factorially with ‘n’, is of limited use of

practical problems [3].

In the present paper, develop and use probabilistic finite approach by using graph in-

variant that is probability propagation matrix which extracts information from degrees

and adjacent conditions of vertices simultaneously. After some operations on the ma-

trix, this kind of information about vertices is propagated to their adjacent vertices.

Since probability propagation matrices can be computed using elementary operations

of vectors and matrices only, therefore this property can be practically used in parallel

computing.

2. Basics about the Probabilistic Finite Automaton Approach

Assume that all plane graphs G = (V,E) are directed and strongly connected. If G is

not directed, it can direct each edge (u, v) ∈ E into two directed edges (u, v) and (v, u)

to make G directed. If G is not strongly connected, it can add a new vertex w into v

and for each vertex v ∈ V , add two directed edges (w, v) and (v, w) into E to make G

strongly connected. For a plane graph G = (V,E)with V = {1, 2, · · · , n}, let A be its

adjacency matrix such that A[i, h] is 1 iff (i, j) ∈ E, where A[i, j] is the (i, j)-entry of

A. Let di be the out degree of vertex i [3].

2.1 Probability Distribution Matrix (PDM)

The PDM B of plane graph G is defined as, for 1 ≤ i, j ≤ n,B[i, j] = A[i,j]
d .

The B is used as follows. Let vertex i ∈ V have di = h and be adjacent to vertices

i1, i2, · · · , ih, where the direction is from i to ik, 1 ≤ k ≤ h. Suppose that moving

from vertex i to the next vertex ik, 1 ≤ k ≤ h, is random and equally likely. Then,

the probability of moving from vertex i to vertex ik is 1
h for each 1 ≤≤ h. Therefore
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the iterative power B(k) of B represents the probability of moving from one vertex to

another after k random walks. Bk[i, j] is the probability of moving from vertex i to

vertex j after k random walks [10].

2.2 Probabilistic Finite Automaton (PFA)

A PFA U is a 4-tuple (Q,Σ,M,Γ) with the following:

(i) Q = {1, 2, 3, · · · , } is a finite set of states.

(ii) Γ is the input alphabet.

(iii) M is a transition function from Σ into (n × n)-dimensional matrices such that

M(σ)[i, j] is the probability that U moves from state i to state j after reading a

symbol σ ∈ Σ. M(σ) is stochastic [8] that is for any i,
n∑
j=1

M(σ)[i, j] = 1.

Extend the domain of M from Σ to Σ∗ as M(ε) = In and M(xσ) = M(x)M(σ) for

x ∈ Σ∗ and σ ∈ Σ, where ε is the empty string and In is the (n× n)-dimensional

identity matrix. Then, M(x)[i, j] is the probability that U will move from state i

to state j after reading string x.

(iv) Γ = [γ1, γ2, · · · , γn] with γi ≥ 0 and
n∑
i=1

Γi = 1.

Γ is called the initial state distribution vector with the i-th element denoting the

probability of state i being the initial state, let Γi denote the row vector with

γi = 1 and γj = 0 if i 6= j.

(v) The state distribution vector of U with initial state i and reading string x is

P iU (x) = Γi ·M(x).

2.3 Probability Propagation Matrix (PPM)

For U with initial state i reading string x = σ1 · σ2 · · ·σk the PPM P iU [x] is a collection

of state distribution vectors P iU (ε), P iU (σ1), · · · , P iU (σ1, σ2, · · · , σk); that is

P iU [x] =


P iU (ε)
P iU (σ1)
P iU (σ1σ2)

...
P iU (σ1σ2 · · ·σk)


A digraph G = (V,E) can be transformed to a U = (Q,Σ,M,Γ) according to following

rules. Each vector in V is viewed as a state in Q so that Q = V . Since edges in E are



208 DR. JITENDRA BINWAL

not labeled, it can label by using symbol a. Thus Σ = {a}. The transition function M

is defined by M(a) = B, where B is the PDM of G.

3. Probabilistic Finite Automaton Approach

Theorem 3.1 : If P is the transition matrix of a Markov chain and ~p(m) denotes the

probability distribution vector after the first m steps, then ~p(m) = ~p(0)Pm, where ~p(0) is

the initial probability distribution vector [8].

Theorem 3.2 : If P denotes the transition matrix of a Markov chain in one step and

P (m) denotes the m-th step transition matrix, then P (m) = Pm, that is, the m-th step

matrix is the m-th power of P [8].

Main Theorem 3.3 : Graph G1 = (V1, E1) is isomorphic to graph G2 = V2, E2) only

if for any fixed i, there exists some j, 1 ≤ j ≤ n such that P i1 and P i2 are isomorphic.

Proof : Since G1 is isomorphic to G2, there exists a bijective mapping π from V1 to V2

such that (i, j) ∈ E1 iff (π(i), π(j)) ∈ E2. Therefore B1[i, j] = B2[π(i), π(j)].

Let U1 and U2 be the PFAs, corresponding to G1 and G2 respectively. It is obvious that

state i of the U1 mapping to state π(i) of U2 witnesses the equivalence of U1 and U2.

It can be shown that π is the isomorphic mapping of P i1[a2n−1] and P i2[a2n−1] by induc-

tion on the length of the input string x. Let gs,t and hs,t be the (s, t)-entry of P i1[x] and

P
π(i)
2 [x] respectively.

1. Basis of Induction : |x| = 0. Let the initial states of U1 and U2 be i and π(i)

respectively. Then, P i1[ε] = [g0,1, g0,2, · · · , h0,n] with g0,i = 1 and g0,t = 0 if i 6= t,

and P
π(i)
2 [ε] = [h0,1, h0,2, · · · , h0,n] with h0,π(i) = 1 and h0,t = 0 if π(i) 6= t. Thus,

P i1[ε] is isomorphic to P
π(i)
2 [ε] via permutation.

2. Induction Hypothesis : |x|| = k − 1. The hypothesis is

∀ 1 ≤ j ≤ n, P i,j1 [ak−1] = P
π(i),π(j)
2 [ak−1].

By the hypothesis, gk−1,j = hk−1,π(j) for 1 ≤ j ≤ n.

3. Induction step : |x| = k, since

P i1(ak) = [gk,1, gk,2, · · · , gk,n] = P i1(ak−1), B1

= [gk−1,1, gk−1,2, · · · , gk−1,n], B1.
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Therefore, for 1 ≤ j ≤ n

gk,j =

n∑
h=1

gk−1,h ·B1(h, j)

=

n∑
h=1

hk−1,π(h) ·B2(π(h), π(j)) = hk,π(j).

Therefore, P i1 = (ak) = P
π(i)
2 = (ak) and, thus P i1[ak] = P

π(i)
2 [ak].

Corollary 3.4 : For a fixed i, if P i1[a2n−1] is not isomorphic to P j2 [a2n−1] for any

j, 1 ≤ j ≤ n then graphs G1 and G2 are not isomorphic.

Corollary 3.5 : If P i1[a2n−1] and P j2 [a2n−1] are isomorphic via a permutation

π(i) = j, then π is a possible isomorphic mapping for graphs G1 and G2.

4. Illustrative and Motivational Example

Consider an undirected graph G1 = (V1, E1) given by adjacency matrix M1.

M1 =



0 1 0 1 1 1

1 0 1 0 0 1

0 1 0 1 0 1

1 0 1 0 1 1

1 0 0 1 0 0

1 1 1 1 0 0



Since G1 is connected undirected plane graph, transfer it to a strongly digraph by di-

recting each edge (u, v) ∈ E1 into two directed edges (u, v) and (v, u) and corresponding

PFA is U1.
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The PDM B1 of G1 = V1, E1 is

0 0.25 0 0.25 0.25 0.25

0.33 0 0.33 0 0 0.33

0 0.33 0 0.33 0 0.33

0.25 0 0.25 0 0.25 0.25

0.5 0 0 0.5 0 0

0.25 0.25 0.25 0.25 0 0


Let state 2 of U1 is selected as the initial state. PPM corresponding U1 is

P 2
1 [a3] =



0 1 0 0 0 0

0.33 0 0.33 0 0 0.33

0.08 0.27 0.08 0.27 0.08 0.19

0.25 0.09 0.21 0.13 0.09 0.21


.

Consider another undirected graph G2 = (V2, E2) given by adjacency matrix M2.

M2 =



0 1 1 0 1 1

1 0 1 0 1 0

1 1 0 0 0 1

0 0 0 0 1 1

1 1 0 1 0 1

1 0 1 1 1 0


Since G2 is connected undirected plane graph, transfer it to a strongly digraph by

directing each edge (u, v) ∈ E2 into two directed edges u, v) and (v, u) and corresponding

PFA is U2.
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The PDM B2 of G2 = (V2, E2) is

0 0.25 0.25 0 0.25 0.25

0.33 0 0.33 0 0.33 0

0.33 0.33 0 0 0 0.33

0 0 0 0 0.5 0.5

0.25 0.25 0 0.25 0 0.25

0.25 0 0.25 0.25 0.25 0


Let state 2 of U2 is selected as the initial state. PPM corresponding U2 is

P 2
2 [a3] =



0 1 0 0 0 0

0.33 0 0.33 0 0 0.33

0.19 0.27 0.08 0.08 0.08 0.27

0.21 0.09 0.21 0.09 0.25 0.13


.

It is found that P 2
1 [a3] is isomorphic to P 2

2 [a3] via the permutation

π =

 1 2 34 5 6

5 2 36 4 1

 .

The permutation π witnesses that G1 is isomorphic to G2 since

A1[i, j] = A2[π(i), π(j)], 1 ≤ i, j ≤ n.

5. Conclusion

In this paper, graph invariant that is probability propagation matrix for graph isomor-

phism if undirected plane graphs have been used. This invariant consists simultaneously

of information about the adjacency conditions and degree of vertices. Using this prop-

erty, an efficient heuristic algorithm for the graph isomorphism problem can be designed.

This property may be suitable for parallel computation. It can be also applicable to

testing of labeled graphs.
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