International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 10 No. III (December, 2016), pp. 205-212

ISOMORPHISM OF UNIDIRECTED PLANE GRAPHS USING MARCOV CHAIN

DR. JITENDRA BINWAL
Associate Professor in Mathematics,
Department of Mathematics, College of Arts, Science and Humanities (CASH), Mody University, Lakshmangarh-332311, District - Sikar (Rajasthan), India

Abstract

The graph isomorphism problem for undirected plane graphs is to determine whether two given undirected plane graphs are isomorphic or not. The motivation behind the isomorphism of undirected plane graphs is Marcov chain. In this paper, develop and use probabilistic finite automaton approach for graph invariant [1, 4] called the probability propagation matrix for isomorphism of undirected plane graphs having six vertices by using the Marcov chain. It may be extended for ' n '-number of vertices where ' n ' is a positive integer.

1. Introduction

The graph isomorphism problem is to determine if there exists a one-to-one correspondence between the vertices of two graphs G_{1} and G_{2} that preserves the adjacency of

Key Words : Graph isomorphism, Marco chain, Graph invariant, Finite automaton, Probability propagation matrix.
2010 AMS Subject Classification : Combinatorics 05C10, 68R10, and 97K30.
(c) http: //www.ascent-journals.com
vertices. Two undirected plane graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a one-to-one mapping π from V_{1} and V_{2} such that $\left.(x, y) \in E_{1}\right)$ if and only if $(\pi(x), \pi(y)) \in E_{2}$. The problem of graph isomorphism arises many fields such as chemistry, switching theory, information retrieval, and linguistics [3,5].

Theoretically, it is always possible to determine whether or not two undirected plane graphs G_{1} and G_{2} are isomorphic by keeping G_{1} fixed and reordering vertices of G_{2} to check if their adjacency matrices become identical. This process may require all (n) ! reordering and comparisons, $1 n$ ' being the number of vertices. Such an inefficient procedure, in which the running time grows factorially with ' n ', is of limited use of practical problems [3].
In the present paper, develop and use probabilistic finite approach by using graph invariant that is probability propagation matrix which extracts information from degrees and adjacent conditions of vertices simultaneously. After some operations on the matrix, this kind of information about vertices is propagated to their adjacent vertices. Since probability propagation matrices can be computed using elementary operations of vectors and matrices only, therefore this property can be practically used in parallel computing.

2. Basics about the Probabilistic Finite Automaton Approach

Assume that all plane graphs $G=(V, E)$ are directed and strongly connected. If G is not directed, it can direct each edge $(u, v) \in E$ into two directed edges (u, v) and (v, u) to make G directed. If G is not strongly connected, it can add a new vertex w into v and for each vertex $v \in V$, add two directed edges (w, v) and (v, w) into E to make G strongly connected. For a plane graph $G=(V, E)$ with $V=\{1,2, \cdots, n\}$, let A be its adjacency matrix such that $A[i, h]$ is 1 iff $(i, j) \in E$, where $A[i, j]$ is the (i, j)-entry of A. Let d_{i} be the out degree of vertex i [3].

2.1 Probability Distribution Matrix (PDM)

The PDM B of plane graph G is defined as, for $1 \leq i, j \leq n, B[i, j]=\frac{A[i, j]}{d}$.
The B is used as follows. Let vertex $i \in V$ have $d_{i}=h$ and be adjacent to vertices $i_{1}, i_{2}, \cdots, i_{h}$, where the direction is from i to $i_{k}, 1 \leq k \leq h$. Suppose that moving from vertex i to the next vertex $i_{k}, 1 \leq k \leq h$, is random and equally likely. Then, the probability of moving from vertex i to vertex i_{k} is $\frac{1}{h}$ for each $1 \leq \leq h$. Therefore
the iterative power $B^{(k)}$ of B represents the probability of moving from one vertex to another after k random walks. $B^{k}[i, j]$ is the probability of moving from vertex i to vertex j after k random walks [10].

2.2 Probabilistic Finite Automaton (PFA)

A PFA U is a 4-tuple (Q, Σ, M, Γ) with the following:
(i) $Q=\{1,2,3, \cdots$,$\} is a finite set of states.$
(ii) Γ is the input alphabet.
(iii) M is a transition function from Σ into $(n \times n)$-dimensional matrices such that $M(\sigma)[i, j]$ is the probability that U moves from state i to state j after reading a symbol $\sigma \in \Sigma$. $M(\sigma)$ is stochastic [8] that is for any $i, \sum_{j=1}^{n} M(\sigma)[i, j]=1$.
Extend the domain of M from Σ to Σ^{*} as $M(\epsilon)=I_{n}$ and $M(x \sigma)=M(x) M(\sigma)$ for $x \in \Sigma^{*}$ and $\sigma \in \Sigma$, where ϵ is the empty string and I_{n} is the $(n \times n)$-dimensional identity matrix. Then, $M(x)[i, j]$ is the probability that U will move from state i to state j after reading string x.
(iv) $\Gamma=\left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right]$ with $\gamma_{i} \geq 0$ and $\sum_{i=1}^{n} \Gamma_{i}=1$.
Γ is called the initial state distribution vector with the i-th element denoting the probability of state i being the initial state, let Γ^{i} denote the row vector with $\gamma_{i}=1$ and $\gamma_{j}=0$ if $i \neq j$.
(v) The state distribution vector of U with initial state i and reading string x is $P_{U}^{i}(x)=\Gamma^{i} \cdot M(x)$.

2.3 Probability Propagation Matrix (PPM)

For U with initial state i reading string $x=\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{k}$ the $\operatorname{PPM} P_{U}^{i}[x]$ is a collection of state distribution vectors $P_{U}^{i}(\epsilon), P_{U}^{i}\left(\sigma_{1}\right), \cdots, P_{U}^{i}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{k}\right)$; that is

$$
P_{U}^{i}[x]=\left[\begin{array}{c}
P_{U}^{i}(\epsilon) \\
P_{U}^{i}\left(\sigma_{1}\right) \\
P_{U}^{i}\left(\sigma_{1} \sigma_{2}\right) \\
\vdots \\
P_{U}^{i}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k}\right)
\end{array}\right]
$$

A digraph $G=(V, E)$ can be transformed to a $U=(Q, \Sigma, M, \Gamma)$ according to following rules. Each vector in V is viewed as a state in Q so that $Q=V$. Since edges in E are
not labeled, it can label by using symbol a. Thus $\Sigma=\{a\}$. The transition function M is defined by $M(a)=B$, where B is the PDM of G.

3. Probabilistic Finite Automaton Approach

Theorem 3.1: If P is the transition matrix of a Markov chain and $\bar{p}^{(m)}$ denotes the probability distribution vector after the first m steps, then $\vec{p}^{(m)}=\vec{p}^{(0)} P^{m}$, where $\vec{p}^{(0)}$ is the initial probability distribution vector [8].
Theorem 3.2: If P denotes the transition matrix of a Markov chain in one step and $P^{(m)}$ denotes the m-th step transition matrix, then $P^{(m)}=P^{m}$, that is, the m-th step matrix is the m-th power of $P[8]$.
Main Theorem 3.3: Graph $G_{1}=\left(V_{1}, E_{1}\right)$ is isomorphic to graph $\left.G_{2}=V_{2}, E_{2}\right)$ only if for any fixed i, there exists some $j, 1 \leq j \leq n$ such that P_{1}^{i} and P_{2}^{i} are isomorphic.
Proof : Since G_{1} is isomorphic to G_{2}, there exists a bijective mapping π from V_{1} to V_{2} such that $(i, j) \in E_{1}$ iff $(\pi(i), \pi(j)) \in E_{2}$. Therefore $B_{1}[i, j]=B_{2}[\pi(i), \pi(j)]$.
Let U_{1} and U_{2} be the PFAs, corresponding to G_{1} and G_{2} respectively. It is obvious that state i of the U_{1} mapping to state $\pi(i)$ of U_{2} witnesses the equivalence of U_{1} and U_{2}. It can be shown that π is the isomorphic mapping of $P_{1}^{i}\left[a^{2 n-1}\right]$ and $P_{2}^{i}\left[a^{2 n-1}\right]$ by induction on the length of the input string x. Let $g_{s, t}$ and $h_{s, t}$ be the (s, t)-entry of $P_{1}^{i}[x]$ and $P_{2}^{\pi(i)}[x]$ respectively.

1. Basis of Induction : $|x|=0$. Let the initial states of U_{1} and U_{2} be i and $\pi(i)$ respectively. Then, $P_{1}^{i}[\epsilon]=\left[g_{0,1}, g_{0,2}, \cdots, h_{0, n}\right]$ with $g_{0, i}=1$ and $g_{0, t}=0$ if $i \neq t$, and $P_{2}^{\pi(i)}[\epsilon]=\left[h_{0,1}, h_{0,2}, \cdots, h_{0, n}\right]$ with $h_{0, \pi(i)}=1$ and $h_{0, t}=0$ if $\pi(i) \neq t$. Thus, $P_{1}^{i}[\epsilon]$ is isomorphic to $P_{2}^{\pi(i)}[\epsilon]$ via permutation.
2. Induction Hypothesis: $|x| \mid=k-1$. The hypothesis is

$$
\forall 1 \leq j \leq n, \quad P_{1}^{i, j}\left[a^{k-1}\right]=P_{2}^{\pi(i), \pi(j)}\left[a^{k-1}\right] .
$$

By the hypothesis, $g_{k-1, j}=h_{k-1, \pi(j)}$ for $1 \leq j \leq n$.
3. Induction step : $|x|=k$, since

$$
\begin{aligned}
P_{1}^{i}\left(a^{k}\right) & =\left[g_{k, 1}, g_{k, 2}, \cdots, g_{k, n}\right]=P_{1}^{i}\left(a^{k-1}\right), B_{1} \\
& =\left[g_{k-1,1}, g_{k-1,2}, \cdots, g_{k-1, n}\right], B_{1} .
\end{aligned}
$$

Therefore, for $1 \leq j \leq n$

$$
\begin{aligned}
g_{k, j} & =\sum_{h=1}^{n} g_{k-1, h} \cdot B_{1}(h, j) \\
& =\sum_{h=1}^{n} h_{k-1, \pi(h)} \cdot B_{2}(\pi(h), \pi(j))=h_{k, \pi(j)}
\end{aligned}
$$

Therefore, $P_{1}^{i}=\left(a^{k}\right)=P_{2}^{\pi(i)}=\left(a^{k}\right)$ and, thus $P_{1}^{i}\left[a^{k}\right]=P_{2}^{\pi(i)}\left[a^{k}\right]$.
Corollary 3.4: For a fixed i, if $P_{1}^{i}\left[a^{2 n-1}\right]$ is not isomorphic to $P_{2}^{j}\left[a^{2 n-1}\right]$ for any $j, 1 \leq j \leq n$ then graphs G_{1} and G_{2} are not isomorphic.

Corollary 3.5: If $P_{1}^{i}\left[a^{2 n-1}\right]$ and $P_{2}^{j}\left[a^{2 n-1}\right]$ are isomorphic via a permutation $\pi(i)=j$, then π is a possible isomorphic mapping for graphs G_{1} and G_{2}.

4. Illustrative and Motivational Example

Consider an undirected graph $G_{1}=\left(V_{1}, E_{1}\right)$ given by adjacency matrix M_{1}.

$$
M_{1}=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Since G_{1} is connected undirected plane graph, transfer it to a strongly digraph by directing each edge $(u, v) \in E_{1}$ into two directed edges (u, v) and (v, u) and corresponding PFA is U_{1}.

The PDM B_{1} of $G_{1}=V_{1}, E_{1}$ is
$\left[\begin{array}{cccccc}0 & 0.25 & 0 & 0.25 & 0.25 & 0.25 \\ 0.33 & 0 & 0.33 & 0 & 0 & 0.33 \\ 0 & 0.33 & 0 & 0.33 & 0 & 0.33 \\ 0.25 & 0 & 0.25 & 0 & 0.25 & 0.25 \\ 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0 & 0\end{array}\right]$

Let state 2 of U_{1} is selected as the initial state. PPM corresponding U_{1} is

$$
P_{1}^{2}\left[a^{3}\right]=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0.33 & 0 & 0.33 & 0 & 0 & 0.33 \\
0.08 & 0.27 & 0.08 & 0.27 & 0.08 & 0.19 \\
0.25 & 0.09 & 0.21 & 0.13 & 0.09 & 0.21
\end{array}\right]
$$

Consider another undirected graph $G_{2}=\left(V_{2}, E_{2}\right)$ given by adjacency matrix M_{2}.

$$
M_{2}=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Since G_{2} is connected undirected plane graph, transfer it to a strongly digraph by directing each edge $(u, v) \in E_{2}$ into two directed edges $\left.u, v\right)$ and (v, u) and corresponding PFA is U_{2}.

The PDM B_{2} of $G_{2}=\left(V_{2}, E_{2}\right)$ is
$\left[\begin{array}{cccccc}0 & 0.25 & 0.25 & 0 & 0.25 & 0.25 \\ 0.33 & 0 & 0.33 & 0 & 0.33 & 0 \\ 0.33 & 0.33 & 0 & 0 & 0 & 0.33 \\ 0 & 0 & 0 & 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0 & 0.25 & 0 & 0.25 \\ 0.25 & 0 & 0.25 & 0.25 & 0.25 & 0\end{array}\right]$

Let state 2 of U_{2} is selected as the initial state. PPM corresponding U_{2} is

$$
P_{2}^{2}\left[a^{3}\right]=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0.33 & 0 & 0.33 & 0 & 0 & 0.33 \\
0.19 & 0.27 & 0.08 & 0.08 & 0.08 & 0.27 \\
0.21 & 0.09 & 0.21 & 0.09 & 0.25 & 0.13
\end{array}\right]
$$

It is found that $P_{1}^{2}\left[a^{3}\right]$ is isomorphic to $P_{2}^{2}\left[a^{3}\right]$ via the permutation

$$
\pi=\left(\begin{array}{ccccc}
1 & 2 & 34 & 5 & 6 \\
& 2 & 36 & 4 & 1
\end{array}\right)
$$

The permutation π witnesses that G_{1} is isomorphic to G_{2} since

$$
A_{1}[i, j]=A_{2}[\pi(i), \pi(j)], \quad 1 \leq i, j \leq n
$$

5. Conclusion

In this paper, graph invariant that is probability propagation matrix for graph isomorphism if undirected plane graphs have been used. This invariant consists simultaneously of information about the adjacency conditions and degree of vertices. Using this property, an efficient heuristic algorithm for the graph isomorphism problem can be designed. This property may be suitable for parallel computation. It can be also applicable to testing of labeled graphs.

Acknowledgement

I am very thankful to Dr. C. L. Parihar and Dr. Madhu Tiwari for motivating and helping in this direction.

References

[1] Binwal Jitendra, Probabilistic finite automaton approach for isomorphism of undirected plane graphs, In International Journal of Physical, Chemical and Mathematical Sciences, 3(1) (Jan-Dec 2014), 4043, [ISSN: 2278-683X].
[2] Binwal Jitendra: Graph isomorphism problem as a graph coding in terms of probability propagation matrix invariance criterion by using ITCPP, In International Journal of Mathematical Sciences and Engineering Applications, 6(V) (September 2012), 137-143, [ISSN: 0973-9424].
[3] Deo Narsingh, Graph Theory with Application to Engineering and Computer Science, Prentice Hall of India Private Ltd., (2001).
[4] Gow-Hsing King and Wen Guey Tzeng, A new graph invariant for graph isomorphism: probability propagation matrix, In Journal of Information Science and Engineering, 15 (1999), 337-352.
[5] Gross J. L. and Yellen J., Handbook of Graph Theory, CRC Press . Publisher, 2004. 6. Miller G.L.: Graph isomorphism, general remarks, In Proceedings of 9th Annual ACM Symposium Theory of Computing, (1977), 143-150.
[7] Osytein Ore, Theory of Graphs, American Mathematical Society Providence, Rhode Island, Volume 38.
[8] Paria G., Statistics and Stochastic Process, Part 1, Scholars Publications, Indore.
[9] Remie Vincent, Bachelors Project: Graph isomorphism problem, Eindhoven University of Technology, Department of Industrial Applied Mathematics, (September 2003).
[10] Tiwari Madhu, Binwal Jitendra and Parihar C. L., Isomorphism of undirected plane graphs using graph invariant: probability propagation matrix, Journal of Indian Acad. Math., 29(1) (2007), 299-311.
[11] Tiwari Madhu, Binwal Jitendra and Parihar C. L., Graph isomorphism problem in terms of probability propagation matrix invariance criterion by using ITCPP, Journal of Indian Acad. Maths, 32(1) (2010), [ISSN:0970-5120].
[12] Tiwari Madhu, Binwal Jitendra and Parihar C. L., ITCPP-A Generalized Heuristic Program as a Certificate for Testing Graph Isomorphism by using Graph Invariant: Probability Propagation Matrix, In International Journal of Mathematics Research, 1(1-3) (2009), 15-32, [ISSN:0976-5840].

