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Abstract

The purpose of this paper is to study the oscillation of the fractional order neutral
differential equation

Dα
t [r(t)[Dα

t (x(t) + p(t)x(τ(t)))]γ ] + q(t)xβ(σ(t)) = 0,

where Dα
t (·) is a modified Riemann-Liouville derivative. The obtained results are

based on the new comparison theorems, which enable us to reduce the oscillatory
problem of 2α-order fractional differential equation to the oscillation of the first
order equation. The results are easily verified.

1. Introduction

In this article, we are concerned with the oscillation of solutions to the nonlinear frac-

tional order neutral differential equation with the form
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Dα
t [r(t)[Dα

t (x(t) + p(t)x(τ(t)))]γ ] + q(t)xβ(σ(t)) = 0, (1)

where Dα
t (·) denote the modified Riemann-Liouville derivative [35], with respect to the

variable t, q(t) ∈ C([t0,+∞)), Dα
t r(t) ∈ C([t0,+∞)), D2α

t p(t) ∈ C([t0,+∞)) and we

define z(t) = x(t) + p(t)x(τ(t)). Throughout this paper, we assume that the following

conditions hold:

(A1) γ, β are the ratios of two positive odd integers;

(A2) r(t) > 0, q(t) > 0, 0 ≤ p(t) ≤ p0 <∞;

(A3) lim
t→+∞

τ(t) = +∞, lim
t→+∞

σ(t) = +∞;

(A4) τ ′(t) ≥ τ0 > 0, τ ◦ σ = σ ◦ τ ;

(A5) t
τ(t) ≥ l > 0.

A solution of the equation is said to be oscillatory if it is neither eventually positive nor

eventually negative. Otherwise it is nonoscillatory. Equation is said to be oscillatory if

all its solutions are oscillatory.

Fractional differential equations are generalizations of classical differential equations to

an arbitrary (non-integer) order. Fractional differential and integral equations have

found many applications in various problems in science and engineering such as electro-

thermoelasticity, electrochemistry of corrosion, electrode-electrolyte polarization, optics

and signal processing, circuit systems, diffusion wave, heat conduction, fluid flow, prob-

ability and statistics, control theory of dynamical systems, and so on; see ([1, 2, 3, 4,

5, 6]). We referred to the monographs of fractional calculus and fractional differential

equations on Kilbas et al. [9], Lakshmikantham et al. [10], Miller and Ross [7], Podlubny

[8], Baleanu et al [11].

Nowadays, many articles have been investigated in some aspects of fractional differential

equations, such as the existence and uniqueness of solutions, exact solutions and stability

of solutions, the methods for explicit and numerical solutions; see ([12, 13, 14, 15, 16,

17]). The problem is to determineing the oscillation of solutions of various equations

like ordinary and partial differential equations, difference equation, dynamics equation

on time scales and fractional differential equations is an interesting area of research and
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more effort has been made to establish oscillation criteria for these equations; see ([18,

19, 20, 21, 22, 23, 24, 27]).

Recently, the research on fractional differential equation is very hot topic and only few

publications paid attention in the oscillation of fractional differential equation; see ([25,

26, 27, 28, 29, 30, 31]).

In 2012, Grace et al. [27] initiated the oscillatory theory of fractional differential equa-

tions of the form

Dq
ax+ f1(t, x) = v(t) + f2(t, x), lim

t→a+
J1−q
a x(t) = b1,

under the conditions

xfi(t, x) > 0 for i = 1, 2, x 6= 0, and t ≥ a,

and

|f1(t, x)| > p1(t)|x|β and |f2(t, x)| > p2(t)|x|γ for x 6= 0, and t ≥ a,

where Dq
a denotes the Riemann-Liouville differential operator of order q with 0 < q ≤ 1,

and Jpa is Rieman-Liouville fractional integral operator and and the functions f1, f2

and v are continuous. By the expression of solution and some inequalities, oscillation

criteria are obtained for a class of nonlinear fractional differential equations. The results

are also stated when the Riemann-Liouville differential operator is replaced by Caputo

differential operator.

In 2012, Chen et al.[25] studied the oscillatory behavior of the following fractional

differential equation

[r(t)(Dα
−y)η(t)]

′ − q(t)f
(∫ ∞

t
(v − t)−αy(v)dv

)
= 0 for t > 0,

where Dα
−y denotes the Liouville right-sided fractional derivative of order α with the

form

(Dα
−y)(t) := − 1

Γ(1− α)

d

dx

∫ ∞
t

(u− t)−αy(v)dv for t ∈ R+; = (0,∞).

By the Riccati transformation technique the authors obtained some sufficient conditions,

which guarantee that every solution of the equation is oscillatory.
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In 2013, Q. Feng et al. [26] concerned with the oscillation of solutions to the nonlinear

forced fractional differential equation

Dα
t [r(t)ψ(x(t))Dα

t x(t)] + q(t)f(x(t)) = e(t), t ≥ t0 > 0, 0 < α < 1,

where Dα
t (·) denotes the modified Riemann-Liouville derivative. Based on a transfor-

mation of variables and properties of the modified Riemann-Liouville derivative, the

fractional differential equation is transformed into a second-order ordinary differential

equation. There by a generalized Riccati transformation, inequalities, and an integra-

tion average technique, they establish oscillation criteria for the fractional differential

equation.

In 2015, Wang et al. [34] studied the oscillatory behavior of the following fractional

differential equation is

Dα
t [a(t)[Dα

t (x(t) + p(t)x(τ(t)))]] + q(t)x(σ(t)) = 0,

where Dα
t (·) denotes the modified Riemann-Liouville derivative and they establish some

new comparison theorems and then they use it to get some sufficient conditions for

oscillations of all solutions in the equation.

This paper focuses on the fractional neutral differential equations involving a modified

Riemann-Liouville derivative, which is given by Jumarie in [35]. The modified Riemann-

Liouville derivative is defined as

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t
0 (t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1;

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.

and it has some properties that

Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α, (2)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (3)

Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t) = Dα
g f [g(t)](g′(t))α (4)

Regarding the integer case of our equation (1), B. Bacuĺiková et al. [24], they have

studied the sceond order nonlinear neutral differential equation

(a(t)[z′(t)]γ)′ + q(t)xβ(σ(t)) = 0
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where z(t) = x(t)+p(t)x(τ(t)). By comparison theorem, they established some sufficient

conditions for the oscillation of equation. We also extend B. Bacuĺiková and J. Džurina

results to the fractional order differential equations.

However, to the best of our knowledge very little is known regarding the oscillatory

behavior of fractional differential equations up to now. In this paper we will consider

the oscillation of fractional order differential equation of (1). We organise this paper as

follows. In section 2, we give a transformation of variables to the fractional differential

equation, and provide a new transformation with delay then translate our fractional

neutral differential equation to a second-order neutral differential equation. In section

3, we first establish some new comparison theorems and then use them to get some

sufficient conditions for oscillation of all solutions of (1) and section 4 we present a

example that apply the results established.

2. Preliminary Lemmas

For the sake of convenience, in this article, we denote:

ξ = y(t) =
tα

Γ(1 + α)
, ξi = y(ti) =

tαi
Γ(1 + α)

, i = 0, 1.

x̃(ξ) = x(t), r̃(ξ) = r(t), p̃(ξ) = p(t), q̃(ξ) = q(t).

Towards to τ(t), σ(t) we have the next transformations.

Lemma 2.1 : Assume A ≥ 0, B ≥ 0, β ≥ 1. Then

(A+B)β ≤ 2β−1(Aβ +Bβ). (5)

Proof : We may assume that 0 < A < B. Consider a function g(u) = uβ. Since g
′′
> 0

for u > 0, function g(u) is convex, that is

g

(
A+B

2

)
≤ g(A) + g(B)

2

which implies (5). 2

Lemma 2.2 : Assume A ≥ 0, B ≥ 0, 0 ≤ β ≤ 1. Then

(A+B)β ≤ Aβ +Bβ. (6)

Proof : If A = 0 or B = 0, then (6) holds. For A 6= 0, on setting x = B/A, Condition

(6) takes the form (1 + x)β ≤ 1 + xβ, which is for x > 0 evidently true. 2
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Lemma 2.3 [34] : Suppose (A4), (A5) hold, we define the functions ξ̃, σ̃ as the following

forms

ξ̃ = y(τ(y−1(ξ))), σ̃ = y(σ(y−1(ξ))),

then it satisfies

x(τ(t)) = x̃(τ̃(ξ)), x(σ(t)) = x̃(σ̃(ξ));

and a new condition

(A′4) : τ̃ ′(ξ) ≥ τ0l
1−α = τ̃0, τ̃ ◦ σ̃ = σ̃ ◦ τ̃ .

Lemma 2.4 : If x(t) is a eventually positive solution of (1), and a sufficient large t1

such that

R(t) =

∫ t

t1

r−1/γ(s)ds→ +∞ as t→ +∞, (7)

then the corresponding function z(t) = x(t) + p(t)x(τ(t)) satisfies

z(t) > 0, r(t)
(
Dα
t (z(t))

)γ
> 0, Dα

t

[
r(t)(Dα

t (z(t)))γ
]
< 0 (8)

eventually.

Proof : Let x(t) = x̃(ξ), where ξ = tα

Γ(1+α) . Then (2) we get Dα
t ξ(t) = 1, and further-

more by use of (4) and Lemma 2.3 we have

Dα
t x(t) = Dα

t x̃(ξ) = x̃′(ξ)Dα
t ξ(t) = x̃′(ξ),

Dα
t x(τ(t)) = Dα

t x̃(τ̃(ξ)) = (x̃(τ̃(t)))′Dα
t ξ(t) = (x̃(τ̃(t)))′.

Similarly we have

Dα
t r(t) = r̃′(ξ), Dα

t p(t) = p̃′(ξ) Dα
t q(t) = q̃′(ξ)

and

Dα
t x(σ(t)) = (x̃(σ̃(ξ)))′.

Then we get

Dα
t z(t) =

(
x̃(ξ) + p̃(ξ)x̃(τ̃(ξ))

)′
.

We define z̃(ξ) = x̃(ξ) + p̃(ξ)x̃(τ̃(ξ)), then Dα
t z(t) = z̃′(ξ). So the equation (1) can be

transformed into the following form

(r̃(ξ)(z̃
′
(ξ))γ)′ + q̃(ξ)x̃β(σ̃(ξ)) = 0 ξ ≥ ξ0 > 0 (9)
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Since x(t) is an eventually positive solution of (1), x̃(ξ) is an eventually positive solution

of (9). Hence there exists ξ1 > ξ0 such that x̃(ξ) > 0 on [ξ1,∞). Also we know z̃(ξ) > 0

on [ξ1,∞). It follows from (9) that

(r̃(ξ)(z̃
′
(ξ))γ)′ = −q̃(ξ)x̃β(σ̃(ξ)) < 0

holds eventually. Therefore, ((r̃(ξ)z̃
′
(ξ))γ)′ is decreasing and thus either z̃′(ξ) < 0 or

z̃′(ξ) > 0 eventually. We claim z̃′(ξ) > 0. Otherwise if z̃′(ξ) < 0, then there exists a

constant c such that

r̃(ξ)(z̃′(ξ))γ < −c < 0

z̃′(ξ) ≤ − c

r̃
1
γ (ξ)

< 0.

Integrating from ξ1 to ξ, one gets,

z̃(ξ) ≤ z̃(ξ1)− c
∫ ξ

ξ1

r̃
− 1
γ (s)ds = z̃(ξ1)− c

∫ t

t1

r
− 1
γ (s)ds→ −∞ as t→∞

This is contradiction and we conclude that z̃′(ξ) < 0 and the proof is complete. 2

3. Main Results

For our further references, let as denote

Q(ξ) = min{q̃(ξ), q̃(τ̃(ξ))}, Q∗(ξ) = Q(ξ)

(∫ σ̃(ξ)

ξ1

r̃
− 1
γ (s)ds

)β
, (10)

Theorem 3.1 : Assume that the hypotheses (A1)-(A4) and (A
′
4) hold and 0 < β ≤ 1.

If the first order neutral differential inequality(
u(t) +

pβ0
τ̃0
u(τ̃(t))

)′
+Q∗(t)uβ/γ(σ̃(t)) ≤ 0 (11)

where τ̃(t), σ̃(t) are defined in Lemma 2.3 has no positive solution, then (1) is oscillatory.

Proof : Assume to the contrary that there exists a non-oscillatory solution x of equation

(1). Without loss of generality, we only consider the case when x(t) is eventually positive,

since the case when x(t) is eventually negative is similar. Then, let x(t) > 0 on [t1,∞).

It is equivalent to x̃(ξ) > 0 on [ξ1,∞). Then from (A2) and (A
′
4) the corresponding

function x̃(ξ) satisfies

z̃(σ̃(ξ)) = x̃(σ̃(ξ)) + p(σ̃(ξ))x̃(τ̃(σ̃(ξ))). (12)
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Furthermore, using Lemma 2.2 and (12), we obtain

z̃β(σ̃(ξ)) =
(
x̃(σ̃(ξ)) + p(σ̃(ξ))x̃(τ̃(σ̃(ξ)))

)β
≤

(
x̃(σ̃(ξ)) + p0x̃(τ̃(σ̃(ξ)))

)β
≤ x̃β(σ̃(ξ)) + pβ0 x̃

β(σ̃(τ̃(ξ))). (13)

On the other hand, it follows from (9)(
r̃(ξ)[z̃′(ξ)]γ

)′
+ q̃(ξ)x̃β(σ̃(ξ)) = 0, (14)

which in view of (A2) and (A
′
4) yields

0 =
pβo
τ̃ ′(ξ)

(
r̃(τ̃(ξ))[(z̃′(τ̃(ξ)))]γ

)′
+ pβo q̃(τ̃(ξ))x̃β(σ̃(τ̃(ξ)))

≥ pβo
τ̃0

(
r̃(τ̃(ξ))[(z̃′(τ̃(ξ))]γ

)′
+ pβo q̃(τ̃(ξ))x̃β(σ̃(τ̃(ξ))) (15)

Then combining (14) and (15), we get

(
r̃(ξ)[z̃′(ξ)]γ

)′
+

pβo
τ̃0

(
r̃(τ̃(ξ))[z̃′(τ̃(ξ))]γ

)′
+ q̃(ξ)x̃β(σ̃(ξ)) + pβo q̃(τ̃(ξ))x̃β(σ̃(τ̃(ξ))) ≤ 0(

r̃(ξ)[z̃′(ξ)]γ
)′

+
pβo
τ̃0

(
r̃(τ̃(ξ))[z̃′(τ̃(ξ))]γ

)′
+ Q(ξ)

[
x̃β(σ̃(ξ)) + pβ0 x̃

β(σ̃(τ̃(ξ)))
]
≤ 0, (16)

where Q(ξ) is defined in (10). Using (16) and (13), we have

(
r̃(ξ)[z̃′(ξ)]γ +

pβo
τ̃0
r̃(τ̃(ξ))[z̃′(τ̃(ξ))]γ

)′
+Q(ξ)z̃β(σ̃(ξ)) ≤ 0. (17)

Now we denote u(ξ) = r̃(t)(z̃′(ξ))γ . From Lemma 2.4 we get u(ξ) > 0 eventually. Also

we have

z̃(ξ) ≥
∫ ξ

ξ1

[r̃(s)(z̃′(s))γ ]1/γ

r̃1/γ(s)
ds ≥ u1/γ(ξ)

∫ ξ

ξ1

r̃−1/γ(s)ds. (18)

Therefore, using (18) in (17), we see that u is a positive solution of(
u(ξ) +

pβ0
τ̃0
u(τ̃(ξ))

)′
+Q(ξ)

(
u1/γ(ξ)

∫ ξ

ξ1

r̃−1/γ(s)ds
)β
≤ 0



OSCILLATION THEOREMS FOR FRACTIONAL ORDER ... 31

(
u(ξ) +

pβ0
τ̃0
u(τ̃(ξ))

)′
+Q∗(ξ)uβ/γ(σ̃(ξ)) ≤ 0, (19)

which is contradiction of (11) and the proof is complete. 2

Next, by using the conclusion of Theorem 3.1, we will deduce oscillatory problem of

our equation into the problem of first-order nonlinear delay differential equations, and

establish some new oscillatory criteria for equation (1). We shall discuss both cases

when τ is a delayed or advanced argument.

Theorem 3.2 : Assume that 0 < β ≤ 1, τ(t) ≥ t and σ(t) ≤ t is increasing. If the first

order delay differential equation

w′(ξ) +
τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
Q∗(ξ)wβ/γ(σ̃(ξ)) = 0 (20)

is oscillatory, the equation (1) is oscillatory.

Proof : We assume that x(t) is a positive solution of (1) eventually. Then it follows

from the proof of Theorem 3.1 that u(ξ) = r̃(t)(z̃′(ξ))γ > 0 is decreasing eventually and

it satisfies (11). We define

w(ξ) = u(ξ) +
pβ0
τ̃0
u(τ̃(ξ)). (21)

Then

w(ξ) ≤ u(ξ)
(

1 +
pβ0
τ̃0

)
,

Substituting this into (11), we see that u(ξ) is a positive solution of the delay differential

inequality

w′(ξ) +
τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
Q∗(ξ)wβ/γ(σ̃(ξ)) ≤ 0 (22)

Then from Theorem 1 in [33], we know that the equation (20) also has a positive solution,

which is a contradiction. The proof is complete. 2

Theorem 3.3 : Assume that 0 ≤ β ≤ 1 and σ(t) ≤ τ(t) ≤ t is increasing. If the first

order delay differential equation

w′(ξ) +
τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
Q∗(ξ)wβ/γ(τ̃−1(σ̃(ξ))) = 0 (23)

is oscillatory, the equation (1) is oscillatory.



32 V. GANESAN & M. SATHISH KUMAR

Proof : We assume that x(t) is a positive solution of (1) eventually. Then it follows

from (21) that

w(ξ) ≤ u(ξ) +
pβ0
τ̃0
u(τ̃(ξ))

w(ξ) ≤ u(τ̃(ξ))
(

1 +
pβ0
τ̃0

)
,

or equivalently

wβ/γ(σ̃(ξ)) ≥ τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
wβ/γ(τ̃−1(σ̃(ξ))).

Using this in (11), we see that u(ξ) is a positive solution of the delay differential in-

equality

w′(ξ) +
τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
Q∗(ξ)wβ/γ(τ̃−1(σ̃(ξ))) ≤ 0.

Then from Theorem 1 in [33], we know that the equation (23) also has a positive solution,

and a contradiction. The proof is complete. 2

Next we will give some sufficient conditions such that equations (20) and (23) have only

oscillatory solutions.

Lemma 3.4 : Let δ ∈ (0, 1] be a quotient of two positive integers. Assume that e(ξ) is

a positive continuous function on (ξ0,∞]. If

lim inf
t→∞

∫ ξ

σ̃(ξ)
e(s)ds >

1

e
(24)

then the first-order delay differential equation

w′(ξ) + e(ξ)wδ(σ̃(ξ)) = 0 (25)

is oscillatory.

Proof : From (24) we can get that∫ ∞
ξ0

e(s)ds = +∞. (26)

Then assume to the contrary that there exists a positive solution w(ξ) of equation (20)

on [ξ1,∞). Since w(ξ) is decreasing, there exists

lim
ξ→∞

w(ξ) = k ≥ 0.
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If k > 0, then integrating (25) from ξ1 to ξ, we have

w(ξ1) ≥
∫ ξ

ξ1

e(s)wδ(σ̃(s))ds ≥ kδ
∫ ξ

ξ1

e(s)ds→ +∞ as ξ → +∞ (27)

This is a contradiction. So we get that lim
ξ→+∞

w(ξ) = 0. And also 0 < w(ξ) < 1,

eventually. Therefore

wδ(σ̃(ξ)) ≥ w(σ̃(ξ)).

Substituting this into (25), we deduce that w(ξ) is a positive solution of the differential

inequality

w′(ξ) + e(ξ)w(σ̃(ξ)) ≤ 0, (28)

But from the Theorem 2.1.1 in [32], the condition (24) yields that the equation (28) has

no positive solution, which is a contradiction. The proof is complete. 2

Applying Lemma 2.4 to (20) and (23), we obtain the following oscillation criteria of (1).

Corollary 3.5 : Let 0 < β ≤ 1, β ≤ γ and τ(t) ≥ t. If

lim inf
ξ→∞

∫ ξ

σ̃(ξ)
Q∗(s)ds >

(τ̃0 + pβ0 )β/γ

eτ̃
β/γ
0

, (29)

then (1) is oscillatory.

Corollary 3.6 : Let 0 < β ≤ 1, β ≤ γ and σ(t) ≤ τ(t) ≤ t. If

lim inf
ξ→∞

∫ ξ

τ−1[σ̃(ξ)]
Q∗(s)ds >

(τ̃0 + pβ0 )β/γ

eτ̃
β/γ
0

, (30)

then (1) is oscillatory.

Theorem 3.7 : Assume that β ≥ 1 and the assumptions (A1) − (A5) holds. If the

first-order delay neutral differential inequality(
u(t) +

pβ0
τ̃0
u(τ̃(t))

)′
+ 21−βQ∗(t)uβ/γ(σ̃(t)) ≤ 0 (31)

has no positive solution, then (1) is oscillatory.

Proof : The result can be proved exactly as Theorem 3.1. We reply only the inequality

(13) by

z̃β(σ̃(ξ)) =
(
x̃(σ̃(ξ)) + p(σ̃(ξ))x̃(τ̃(σ̃(ξ)))

)β
≤

(
x̃(σ̃(ξ)) + p0x̃(τ̃(σ̃(ξ)))

)β
≤ 2β−1

[
x̃β(σ̃(ξ)) + pβ0 x̃

β(σ̃(τ̃(ξ)))
]
, (32)
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which follows from Lemma 2.1.

Theorem 3.8 : Assume that β ≥ 1 and τ(t) ≥ t is increasing. Then if the first-order

delay differential equation

w′(ξ) +
τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
21−βQ∗(ξ)wβ/γ(σ̃(ξ)) = 0 (33)

is oscillatory, the equation (1) is oscillatory.

Proof : The Proof is similar to the proof of Theorem 3.2. 2

Theorem 3.9 : Assume that β ≥ 1 and σ(t) ≤ τ(t) ≤ t is increasing. Then if the first

order neutral differential equation

w′(ξ) +
τ̃
β/γ
0

(τ̃0 + pβ0 )β/γ
21−βQ∗(ξ)wβ/γ(τ̃−1(σ̃(ξ))) = 0 (34)

is oscillatory, the equation (1) is oscillatory.

Proof : The Proof is similar to the proof of Theorem 3.3.

Combining Lemma 2.4 with Theorem 3.8 and Theorem 3.9, we archive the following

oscillatory criteria for (1).

Corollary 3.10 : Let γ ≥ β ≥ 1 and τ(t) ≥ t. If

lim inf
ξ→∞

∫ ξ

σ̃(ξ)
Q∗(s)ds > 2β−1 (τ̃0 + pβ0 )β/γ

eτ̃
β/γ
0

, (35)

then (1) is oscillatory.

Corollary 3.11 : Let γ ≥ β ≥ 1 and σ(t) ≤ τ(t) ≤ t. If

lim inf
ξ→∞

∫ ξ

τ−1[σ̃(ξ)]
Q∗(s)ds > 2β−1 (τ̃0 + pβ0 )β/γ

eτ̃
β/γ
0

, (36)

then (1) is oscillatory.

4. Example

Consider fractional order differential equation

D
1
2
t

(
t
3
2

[
D

1
2
t

[
x(t) +

1

t
x(t+ 2)

)]3)
+ tx

5
3 (t/2) = 0, t ≥ 1, (37)

where Dα
t is a modified Riemann-Liouville derivative. In (37), we set r(t) = t

3
2 , p(t) = 1

t ,

q(t) = t, τ(t) = t+2, σ(t) = t
2 , α = 1

2 , γ = 3, β = 5
3 . Then using a variable substitution
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we have

ξ = y(t) =
t1/2

Γ(3
2)
, y−1(ξ) = Γ2

(3

2

)
ξ2, ξ1 = m =

1

Γ(3
2)
.

and we also have

r̃(ξ) = r(y−1(ξ)) = Γ3
(3

2

)
ξ3,

σ̃(ξ) = y(σ(y−1(ξ))) =

(
Γ2
(

3
2

)
ξ2
) 1

2

21/2Γ(3
2)

=
ξ

21/2

q̃(ξ) = q(y−1(ξ)) = Γ2
(3

2

)
ξ2.

Easily we see the equation (37) satisfies (A1) − (A4), furthermore we have 0 ≤ p(t) =

1
t ≤ 1 = p0, τ0 = (t+ 2)

′
= 1, limt→∞

t
τ(t) = t

t+2 = l = 1, τ̃0 = τ0l
1− 1

2 = 1. Here q̃(ξ) is

increasing and τ(t) > t, τ̃(ξ) > ξ and we apply Corollary 3.10 to (37),

Q(ξ) = q̃(ξ) = Γ2
(3

2

)
ξ2,∫ ˜σ(ξ)

ξ1

r−1/γ(s) ds =

∫ 2−1/2ξ

ξ1

1

Γ(3
2)s

ds =
1

Γ(3
2)

[ln 2−1/2ξ − ln m],

Q∗(ξ) = Q(ξ)

(∫ σ̃(ξ)

ξ1

r̃
− 1
γ (s) ds

)β
= Γ1/3

(3

2

)
ξ
(

[ln 2−1/2ξ − ln m]
)5/3

.

Then we get,

lim inf
ξ→∞

∫ ξ

σ̃(ξ)
Q∗(s)ds = lim inf

ξ→∞

∫ ξ

2−1/2ξ
Γ1/3

(3

2

)
s2
(

[ln 2−1/2s− ln m]
)5/3

ds

= ∞ > 2β−1 (τ̃0 + pβ0 )β/γ

e τ̃
β/γ
0

=
211/9

e
,

which guaranties the oscillation of (37).
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