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Abstract
A magic square is a square array of numbers where the rows, columns, diagonals and
co-diagonals add up to the same number. The paper discuss about a well-known
class of magic square; the strongly magic square. In this paper group homomor-
phisms and isomorphisms on strongly magic squares are discussed.

1. Introduction

The magic square is said to have been discovered in the third millennium B. C. by the

Chinese Emperor Yu. According to tradition, the Emperor, while walking on the river

bank, found a turtle with an odd diagram on its shell. The Emperor saw in the unusual

pattern a numerical sequence. He called this pattern the “Lo Shu.” His discovery was a

magic square of the third order. Later, magic squares appeared in India, and then were
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known to the Arabs, who introduced them to the West. More research on the topic was

done during the Renaissance by the mathematician Cornelius Agrippa (1486=1535) who

constructed magic squares of orders 3 through 9 to represent various planets, the sun,

and the moon. Another famous example of a magic square appeared in Albrecht Durer’s

engraving “Melancholia”, or the Genius of the Industrial Science of Mathematics [6].

A normal magic square is a square array of consecutive numbers from where the rows,

columns, diagonals and co-diagonals add up to the same number [1]. The constant

sum is called magic constant or magic number. Along with the conditions of normal

magic squares, strongly magic square will have a stronger property that the sum of the

entries of the sub-squares taken without any gaps between the rows or columns is also

the magic constant [2]. There are many recreational aspects of strongly magic squares.

But, apart from the usual recreational aspects, it is found that these strongly magic

squares possess advanced mathematical properties.

2. Notations and Mathematical Preliminaries

(A) Magic Square

A magic square of order n is an nth order matrix [aij ] such that

n∑
j=1

aij = ρ for i = 1, 2, · · · , n (1)

n∑
j=1

aji = ρ for i = 1, 2, · · · , n (2)

n∑
i=1

aii = ρ,
n∑

i=1

ai,n−i+1 = ρ (3)

Equation (1) represents the row sum, equation (2) represents the column sum, equation

(3) represents the diagonal and co-diagonal sum and symbol ρ represents the magic

constant. [3]

(B) Magic Constant

The constant ρ in the above definition is known as the magic constant or magic number.

The magic constant of the magic square A is denoted as ρ(A).

(C) Strongly magic square (SMS): Generic Definition
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Let [aij ] be a matrix of order n2 × n2, such that

n2∑
j=1

aij = ρ for i = 1, 2, · · · , n2 (4)

n2∑
j=1

aji = ρ for i = 1, 2, · · · , n2 (5)

n2∑
i=1

aii = ρ,
n2∑
i=1

ai,n2−i+1 = ρ (6)

n−1∑
i=0

n−1∑
k=0

ai+k,j+l = ρ for i, j = 1, 2, · · · , n2 (7)

where the subscripts are congruent modulo n2.

Equation (4) represents the row sum, equation (5) represents the column sum, equation

(6) represents the diagonal and co-diagonal sum, equation (7) represents the n×n sub-

square sum with no gaps in between the elements of rows or columns and is denoted as

M
(n)
OC or M (n)

OR and ρ is the magic constant.

(D) Group homomorphism

A mapping φ from a group 〈G, ∗〉 into a group 〈G′, ∗′〉 is a homomorphism of G into G′

if φ(a ∗ b) = φ(a) ∗′ φ(b) for all a, b ∈ G[4].

(E) Group Isomorphism

A one to one onto homomorphism φ from a group 〈G, ∗〉 into a group 〈G′, ∗′〉 is defined

as isomorphism [4].

(F) A One to One and Onto Mapping

A function φ : X → Y is one to one if φ(x1) = φ(x2) only when x1 = x2.

The function φ is onto of Y if the range of φ is Y . [4]

(G) Other Notations

1. SMs denote the set of all strongly magic squares of order n2 × n2.

2. SMS(a) denote the set of all strongly magic squares of the form [aij ]n2×n2 such that

aij = a for every i, j = 1, 2, · · · , n2. Here A is denoted as [a], i.e. If A ∈ SMS(a)

then ρ(A) = n2a.
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3. SMS(0) denote the set of all strongly magic squares of order n2 × n2 with magic

constant 0, i.e. If A ∈ SMS(0), then ρ(A) = 0.

3. Propositions and Theorems

Proposition 1 : If A and B are two Strongly magic squares of order n2 × n2 with

ρ(A) = a and ρ(B) = b, then C = (λ+ µ)(A+B) is also a Strongly magic square with

magic constant (λ+ µ)(ρ(A) + ρ(B)), for every λ, µ ∈ R.

Proof : Let A = [aij ]n2×n2 and B = [bij ]n2×n2 . Then

C = (λ+ µ)(A+B)

= (λ+ µ)[aij + bij ]

= [(λ+ µ)(aij + bij)].

Sum of the ith row elements of

C =
n2∑

j=1

cij

=
n2∑

j=1

((λ+ µ)(aij + bij))

= (λ+ µ)

 n2∑
j=1

(aij) +
n2∑

j=1

(bij)


= (λ+ µ)(a+ b)

= (λ+ µ)(ρ(A) + ρ(B)).

A similar computation holds for column sum.

Main diagonal sum

n2∑
i=1

cii =
n2∑
i=1

((λ+ µ)(aii + bii))

= (λ+ µ)

 n2∑
i=1

(aii) +
n2∑
i=1

(bii)


= (λ+ µ)(a+ b)

= (λ+ µ)(ρ(A) + ρ(B)).
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A similar computation holds for co-diagonal sum.

The sum of the n× n sub squares M (n)
kC /M

(n)
kR is given by

n−1∑
l=0

n−1∑
k=0

Ci+k,j+1 =
n−1∑
l=0

n−1∑
k=0

(λ+ µ)(ai+k,j+l + bi+k,j+l)

= (λ+ µ)

(
n−1∑
l=0

n−1∑
k=0

(ai+k,j+l) +
n−1∑
l=0

n−1∑
k=0

(bi+k,j+l)

)
= (λ+ µ)(a+ b)

= (λ+ µ)(ρ(A) + ρ(B)).

From the above propositions the following results can be obtained.

Results :

If for every λ, µ ∈ R and A,B ∈ SMs,

(1.1) λ(A+B) ∈ SMs with ρ(λ(A+B)) = λ(ρ(A) + ρ(B)).

Proof : By putting µ = 0 in Proposition 1, result can be deduced.

(1.2) (A+B) ∈ SMs with ρ(A+B) = ρ(A) + ρ(B).

Proof ; By putting λ = 1 in Result 1.1 this can be obtained.

Proposition 2 : The mapping φ : SMs → R defined by φ(A) = ρ(A), ∀ A ∈ SMs is a

group homomorphism.

Proof : Let A,B ∈ SMs , then

φ(A+B) = ρ(A+B) = ρ(A) + ρ(B) (By Result 1.2)

= φ(A) + φ(B).

Proposition 3 : The mapping φ : SMS(a) → R defined by φ(A) = ρ(A), ∀ A ∈ SMS(a)

is a group homomorphism.

Proof : It can be easily verified since SMS(a) ⊂ SMs .

Proposition 4 : The mapping φ : SMS(0) → R defined by φ(A) = ρ(A), ∀ A ∈ SMS(0)

is a group homomorphism.

Proof : It can be easily verified since SMS(0) ⊂ SMs .

Theorem 5 : The mapping φ : SMS(a) → R defined by φ(A) = ρ(A), ∀ A ∈ SMS(a) is

a group isomorphism.

Proof : Let A,B ∈ SMS(a);A = [a], B = [b] then ρ(A) = n2a and ρ(B) = n2b.
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(i) To show that φ is one to one

φ(A) = φ(B)

⇒ ρ(A) = ρ(B)

⇒ n2a = n2b

⇒ a = b.

(ii) To show that φ is onto

For every a ∈ R, there exists A =
[

a
n2

]
∈ SMS(a) such that ρ(A) = a.

Since φ is 1− 1 and onto and from Proposition 3, it can be deduced.

4. Conclusion

While magic squares are recreational in grade school, they may be treated somewhat

more seriously in different linear algebra courses. The study of strongly magic squares

is an emerging innovative area in which mathematical analysis can be done. Here some

advanced properties regarding strongly magic squares are described.
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