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Abstract

This paper makes a modest effort to explore an SIR epidemic model with modified
non-linear incidence rate, which details the psychological impact of certain serious
diseases on the community when the number of infections progressively registers
an increase. The stability of the disease-free and endemic equilibrium is addressed.
The global stability of the system was confirmed by deploying Dulac’s criterion
and applying Poincare-Bendixon theorem. Mat Lab has been applied to evaluate
numerical results and it has been observed that the simulated results and analytical
results coincide to a larger extent, implying the authenticity and validity of the
model.
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1. Introduction

It is evidently acknowledged by mathematicians and biologists alike that infectious

diseases have been the root cause for spreading of infections, a direct effect of microor-

ganisms acting on human body and weakening the immunity system. While the mode

of transmission is usually from animal and birds to humans, one cannot rule out the

imminent possibility of such infection spreading from humans to fellow humans. An

interconnected series of events and factors may be attributed to the spread of such in-

fectious diseases, among which poor hygiene, indiscriminate use of antibiotics, crowded

human habitats, ease of travel that makes spread of diseases and several other factors.

While bacteriologists and virologists make a point of studying about the occurrence of

diseases and a cure for them; mathematicians grapple with the patterns discernible in

such occurrences to ensure whether a mathematical model can predict the behavioral

patterns of such microbes within the ambit of human understanding. Mathematical

modeling meets this need admirably by formulating equations to account for, the spread

and possible behavior of such infectious diseases.

The dynamics of infectious diseases is an important research area in mathematical epi-

demiology. Comprehending the manner of transmission of infectious diseases in commu-

nities, regions and countries which may result in better approaches for bringing down

the transmission of these diseases. There are plenty of epidemic models in action that

satisfactorily explain at what rate and when such diseases set in, and how they should

be tackled. These models are defined in mathematical modeling form with respect to

status of disease that normally consists of three components: susceptible (S) individuals

who are abjectly prone to infection, infected (I) individuals who are in the grip of infec-

tion can disseminate the disease to susceptible individuals and recovered (R) individuals

who have convalesced and thus out of danger, posing no threat with whom they come

in contact with. Such models are known as SIR models. A detailed history of mathe-

matical epidemiology and basics of SIR epidemic models may be found in the classical

books of Bailey [2], Murray [3], and Anderson and May [4].The first deterministic SIR

model for communicable diseases has been introduced by Kermack and McKendrick [1]

in 1927.

Classical epidemic models hold that the incidence rate (rate at which susceptible become

infectious) exercises its own role in determining the spread of any disease. Several
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different incidence rates have been formulated and investigated by Hethcote [6], Ma et

al. [7] and Xiao and Ruan [10], etc. Among the prominent ones, bilinear incidence

rate is conspicuous and is denoted by βSI, where S and I stand for the number of

the susceptible and infected individuals in the population, and β is a positive constant.

Detailed investigation into cholera epidemic which spread in Bari in 1973 led Capasso

and Serio [5] to inject the concept of saturated incidence rate of the form βSI
1+α1I , where

α1 is a positive constant. This is significant that the number of the effective contacts

between infected and susceptible individuals may saturate at higher infective levels

owing to excessive accumulation of infected individuals or on account of preventive

measures started off by the susceptible individuals. The suitably changed saturated

incidence rate of the form βSI
1+α1S+α2I , where α1, α2 are positive constants, was proposed

by Kaddar [8] and Pathak et al [9]. Finally, the specific nonlinear incidence rate of the

form βSI
1+α1I+α2S+α3SI was proposed by Jihad Adnani et al [11].

One of the fundamental parameters denotes the spread of diseases, and is also iden-

tified with long term behaviors and the level of vaccination necessary for eradication.

This parameter goes by the name of basic reproduction number, R0, which is defined

by epidemiologists as the average number of secondary cases caused by an individual

infected in a totally susceptible population. When R0 > 1, the disease can penetrate a

susceptible population and the number of cases will increase, when R0 < 1, the disease

does not aggravate. Therefore, in its primitive form, R0 throws sufficient evidence in

the direction where in a population tends to lose from a specific disease. Nowadays, the

result of epidemiological research is specified in terms of basic reproduction number.

In this paper, we have considered a deterministic SIR epidemic model with modified

nonlinear incidence rate. The paper has been organized as follows. In section 2, we

present the model and derive the disease-free equilibrium and the endemic equilibrium.

In section 3, we have discussed stability analysis of the model. Numerical simulations

of the system figure in section 4. In conclusion, the findings of the study are discussed

in brief in section 5.

2. The Mathematical Model

In this paper, we consider the following SIR epidemic model with a modified nonlinear
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incidence rate:
dS
dt = b− βSI

1+α1I+α2SI − µS

dI
dt = βSI

1+α1I+α2SI − (µ + γ)I

dR
dt = γI − µR

(1)

where S(t), I(t) and R(t) denote the numbers of susceptible, infective, and recovered

individuals at time t, respectively. b denotes the recruitment rate of the population, µ is

the natural death rate of the population, γ is the recovery rate of infective individuals,

β is the infection coefficient and α1, α2 are non negative constants.

The first two equations in system (1) do not depend on the third equation, and therefore

this equation can be omitted without loss of generality. Hence, system (1) can be written

as
dS
dt = b− βSI

1+α1I+α2SI − µS

dI
dt = βSI

1+α1I+α2SI − (µ + γ)I.

(2)

Summing up the two equations in (2) and denoting N(S, I) = S(t) + I(t), we have

dN

dt
= b− µN − γI. (3)

We shall show that the system (2) is uniformly bounded by the following theorem.

Theorem 1 : The solutions of (2) are eventually confined in the compact subset

Γ =
{

(S, I) ∈ R2
+ : S ≥ 0, S + I ≤ b

µ

}
.

Proof : Let S(t), I(t) be any solution of (2) with initial conditions S(0) = S0, I(0) = I0.

From Eq. (3) it follows that dN
dt ≤ b− µN .

Applying the theory of differential inequalities, we obtain

N(S, I) ≤ b

µ

(
1− e−µt

)
+ N(S0, I0)e−µt,

and for t→∞, we have lim sup
t→∞

N ≤ b
µ .

Hence all the solutions of (2) are eventually confined in Γ. This completes the proof.

System (2) always has a disease-free equilibrium E0(b/µ, 0, 0).

To find the endemic equilibrium, set

b− βSI
1+α1I+α2SI − µS = 0

βS
1+α1I+α2SI − (µ + γ) = 0

(4)
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This yields

α2(µ + γ)2I2 − (µ + γ)(µα1 + bα2 + β)I + bβ − µ(µ + γ) = 0. (5)

Define the basic reproduction number as follows

R0 =
bβ

µ(µ + γ)
. (6)

From Eq. (5), we can observe that

(i) if R0 ≤ 1, then there is no positive equilibrium;

(ii) if R0 > 1, then there is a unique positive equilibrium (endemic equilibrium)

E∗(S∗, I∗), given by

S∗ =
b(1 + α1I

∗)
µR0 − bα2I∗

, I∗ =
(µα1 + bα2 + β) +

√
∆

2(µ + γ)α2

where ∆ = (µα1 + bα2 + β)2 + 4α2µ(µ + γ)(R0 − 1).

3. Stability Analysis

Theorem 2 : The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1

and it is unstable if R0 > 1.

Proof : The Jacobian matrix of system (2) is given by

J =

 − (1+α1I)βI
(1+α1I+α2SI)2

− µ − βS
(1+α1I+α2SI)2

(1+α1I)βI
(1+α1I+α2SI)2

βS
(1+α1I+α2SI)2

− (µ + γ)

 (7)

The Jacobian matrix at E0 is

J(E0) =

 −µ − bβ
µ

0 bβ
µ − (µ + γ)

 .

At E0 the characteristic equation is

(λ + µ)
[
λ− bβ

µ
− (µ + γ)

]
= 0. (8)

Obviously, (8) has two roots λ1 = −µ < 0 and λ2 = bβ
µ − (µ + γ). Hence, E0 is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.
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Theorem 3 : The endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

Proof : The Jacobian matrix of system (2) at E∗ is given by

J(E∗) =

 − (1+α1I∗)βI∗

(1+α1I∗+α2S∗I∗)2 − µ − βS∗

(1+α1I∗+α2S∗I∗)2

(1+α1I∗)βI∗

(1+α1I∗+α2S∗I∗)2
βS∗

(1+α1I∗+α2S∗I∗)2 − (µ + γ)


that can be written as

J(E∗) =

 − (1+α1I∗)βI∗

(1+α1I∗+α2S∗I∗)2 − µ − (µ+γ)
1+α1I∗+α2S∗I∗

(1+α1I∗)βI∗

(1+α1I∗+α2S∗I∗)2 − (µ+γ)(α1I∗+α2S∗I∗)
1+α1I∗+α2S∗I∗


when we take into account the following identity, which is obtained by the endemic

equilibrium

µ + γ =
βS∗

1 + α1I∗ + α2S∗I∗
. (9)

The trace of J(E∗) is

tr(J(E∗)) = −
[
µ +

(1 + α1I
∗)βI∗ + (µ + γ)(α1I

∗ + α2S
∗I∗)(1 + α1I

∗ + α2S
∗I∗)

(1 + α1I∗ + α2S∗I∗)2

]
< 0.

Thus tr(J(E∗)) < 0.

The determinant of J(E∗) is

det(J(E∗)) =
(µ + γ)[(1 + 2α1I

∗ + α2S
∗I∗)βI∗ + µ(α1I

∗ + α2S
∗I∗)(1 + α1I

∗ + α2S
∗I∗)2]

(1 + α1I∗ + α2S∗I∗)3
> 0.

Thus det(J(E∗)) > 0. Here, the eigen values of the Jacobian matrix J(E∗) have negative

real parts. Hence the endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

Theorem 4 : If R0 > 1, the unique endemic equilibrium E∗(S∗, I∗) is globally asymp-

totically stable in the interior of Γ.

Proof : Let us denote

P (S, I) = b− βSI

1 + α1I + α2SI
− µS; Q(S, I) =

βSI

1 + α1I + α2SI
− (µ + γ)I.

Take the Dulac function D(S, I) = 1+α1I+α2SI
βSI , S > 0, I > 0. Then we have

∂(DP )
∂S

+
∂(DQ)

∂I
= −b(1 + α1I)

βS2I
− (µ + γ)α1

βS
− (2µ + γ)α2

β
< 0.
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Thus, system (2) does not have a limit cycle in the interior of Γ. From Theorem 3,

if R0 > 1 holds then E∗ is locally asymptotically stable. A simple application of the

classical Poincare-Bendixon theorem and Theorem 1, it suffices to show that the unique

endemic equilibrium E∗ is globally asymptotically stable in the interior of Γ. This com-

pletes Theorem 4.

4. Numerical Simulations

1. The parameters in the model (1) are taken as

b = 0.48;µ = 0.023;β = 0.564;α1 = 0.056;α2 = 0.0032; γ = 0.965;

S∗ = 1.841; I∗ = 0.111;S(0) = 0.92; I(0) = 0.2; and R0 = 11.913 > 1(Fig.1)

2. The parameters in the model (1) are taken as

b = 0.02;µ = 0.003;β = 0.564;α1 = 0.002;α2 = 0.006; γ = 0.965;

S∗ = 1.717; I∗ = 0.004;S(0) = 0.92; I(0) = 0.2; and R0 = 3.884 > 1(Fig.2)
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5. Concluding Remarks

In this paper, we considered a deterministic SIR epidemic model with modified nonlin-

ear incidence rate. Our analysis establishes that the global stability of the SIR epidemic

model is totally determined by the basic reproduction number R0. When R0 < 1, the

disease-free equilibrium is globally asymptotically stable in the feasible region. The

proof is based on the construction of a Dulac function and applying Dulac’s criterion

and the Pioncare-Bendixson theorem as used by C. Vargas - De-Leon [12]. If R0 > 1,

a unique endemic equilibrium exists and is globally stable in the interior of the feasible

region. Numerical results also support our analytical results.
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