
International J. of Math. Sci. & Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 11 No. II (August, 2017), pp. 99-110

CONVOLUTION IDENTITIES INVOLVING FIXED POWER OF

EXPANDING VARIABLE, HYBRID FIBONACCI AND LUCAS

POLYNOMIALS

R. RANGARAJAN1, C. K. HONNEGOWDA2 AND RANGASWAMY3

1,2 Department of Studies in Mathematics,
University of Mysore, Manasagangotri, Mysuru - 570 006, India
3 Department of Mathematics, B.M.S. College of Engineering,
Bull Temple Road, Basavanagudi, Bengaluru - 560 019, India

Abstract

Recently, hybrid Fibonacci polynomials in two variables are defined in [8] which
contains Fibonacci numbers and two types of Fibonacci polynomials in one vari-
able, namely, Catalan polynomials and Jacobsthal polynomials as special cases and
which exhibits many interesting combinatorial properties useful for research work-
ers in combinatorics. In a similar way, hybrid Lucas polynomials in two variables
are defined in [9] corresponding to the hybrid Fibonacci polynomials in two vari-
ables. In the present paper, Convolution Identities of hybrid Fibonacci and Lucas
polynomials in two variables with a fixed power of expanding variable is stated and
proved up to third degree.

1. Introduction

The simple and natural recurrence relation with three terms is Fn+1 = Fn + Fn−1,
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F0 = 0, F1 = 1, n = 1, 2, 3, . . . given by Fibonacci numbers.

Closely connected to this is one more such relation Ln+1 = Ln +Ln−1, L0 = 2, L1 = 1,

n = 1, 2, 3, . . . given by Lucas numbers [1, 2, 3, 12].

Motivated by the above relations, a twin pair of sequences {l(C)
n (x), f (C)

n (x)} called

Catalan Lucas and Fibonacci polynomials and {l(J)
n (x), f (J)

n (x)} called Jacobsthal Lucas

and Fibonacci polynomials are defined as follows in the literature [3]:

l
(C)
n+1(x) = xl(C)

n (x) + l
(C)
n−1(x), with l

(C)
0 (x) = 2, l(C)

1 (x) = x, n = 1, 2, 3, . . . ;

f
(C)
n+1(x) = xf (C)

n (x) + f
(C)
n−1(x), with f

(C)
0 (x) = 0, f (C)

1 (x) = 1, n = 1, 2, 3, . . . ;

l
(J)
n+1(y) = l(J)

n (x) + yl
(J)
n−1(x), with l

(J)
0 (y) = 2, l(J)

1 (y) = 1, n = 1, 2, 3, . . . ;

and f
(J)
n+1(y) = f (J)

n (x) + yf
(J)
n−1(y), with f

(J)
0 (Y ) = 0, f (J)

1 (y) = 1, n = 1, 2, 3, . . . .

The following three term recurrence relations of hybrid Fibonacci and Lucas polynomials

[8, 9] are useful for working out convolution identities.

f
(H)
n+1(x, y) = xf (H)

n (x, y) + yf
(H)
n−1(x, y), (1.1)

l
(H)
n+1(x, y) = x l(H)

n (x, y) + y l
(H)
n−1(x, y) (1.2)

and

l(H)
n (x, y) = x f (H)

n (x, y) + 2y f (H)
n−1(x, y). (1.3)

The generalized hybrid Fibonacci and Lucas polynomials in two variables x and y of

degree n, are given by the following binet forms:

f (H)
n (x, y) =

1√
x2 + 4y

[(x+
√
x2 + 4y
2

)n
−
(x−√x2 + 4y

2

)n]
.

l(H)
n (x, y) =

[(x+
√
x2 + 4y
2

)n
+
(x−√x2 + 4y

2

)n]
.

Put α =
(
x+
√
x2+4y
2

)
and β =

(
x−
√
x2+4y
2

)
. Then

f (H)
n (x, y) =

αn − βn

α− β
, l(H)

n (x, y) = αn + βn. (1.4)
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Also,

α+ β = x, α− β =
√
x2 + 4y and αβ = − y. (1.5)

Hybrid Fibonacci and Lucas polynomials in two variables exhibit many interesting com-

binatorial properties useful for research workers in combinatorics [1, 2, 3, 10, 12]. They

are also related to Tchebyshev polynomials [6, 7, 8, 9, 11].

In the next section, Convolution Identities of hybrid Fibonacci and Lucas polynomials

in two variables with a fixed power of expanding variable, km,m = 0 , 1 are stated

and proved. In the last section, Convolution Identities of hybrid Fibonacci and Lucas

polynomials in two variables with a fixed power of expanding variable, km,m = 2 , 3

are stated and proved.

2. Convolution Identities with a Fixed Power of Expanding Variable

One of the remarkable identities is the following well known Bernoulli’s identity [1] : If

Sn(m) =
n∑
k=1

km, then

(
m

1

)
Sn(m− 1) +

(
m

2

)
Sn(m− 2) + · · ·+

(
m

1

)
Sn(1) + Sn(0) =

[
(n+ 1)m − 1m

]
.

Put σn(m,x) =
n∑
k=1

kmxk. By a simple manipulation km =
(

(k−1)+1
)m

and a binomial

expansion readily gives

σn(m,x) = x
[
σn(m,x) +

(
m

1

)
σn(m− 1, x) +

(
m

2

)
σn(m− 2, x) + · · ·+

(
m

1

)
σn(1, x)

+ σn(0, x)
]
−
[
(n+ 1)m − 1m

]
.

Hence we arrive at a beautiful generalized Bernoulli’s identity:

(x− 1)σn(m,x) +
(
m

1

)
xσn(m− 1, x) +

(
m

2

)
xσn(m− 2, x)

+ · · ·+
(
m

1

)
xσn(1, x) + σn(0, x)

= xn+1
[
(n+ 1)m − 1m

]
.

For x = 1, we get back Bernoulli’s identity [1].
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Table 1

m σn(m,x)

0
xn+1 − x
x− 1

1
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2

2
1

(x− 1)3
[n2xn+3 − (2n2 + 2n− 1)xn+2 + (n+ 1)2xn+1 − x2 − x]

3
1

(x− 1)4
[n3xn+4 + a31x

n+3 + a32x
n+2 + a33x

n+1 + x3 + 4x2 + x]

where a31 = (−3n3−3n2+3n−1), a32 = (3n3+6n2−4) and a33 = (−n3−3n2−3n−1).

One can apply generalized Bernoulli’s identity to compute for any value of m. But in

the present paper we work out only up to 3. The Convolution identities are stated and

proved in this section for m = 0, 1 and continued in the next section for m = 2, 3.

In a different approach, Convolution identities at levels m = 1, 2 are available in the

literature [4, 5].

Theorem 1 : The convolution identities at the level m = 0 are

(1.1)
n∑
k=1

f
(H)
k (x, y)f (H)

n−k(x, y) =
n l

(H)
n (x, y)− xf (H)

n (x, y)
(x2 + 4y)

(1.2)
n∑
k=1

l
(H)
k (x, y)l(H)

n−k(x, y) = n l(H)
n (x, y) + xf (H)

n (x, y)

(1.3)
n∑
k=1

l
(H)
k (x, y)f (H)

n−k(x, y) = (n− 1)f (H)
n (x, y)

(1.4)
n∑
k=1

f
(H)
k (x, y)l(H)

n−k(x, y) = (n+ 1)f (H)
n (x, y)

Proof :

(1.1) :
n∑
k=1

f
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2
[ n∑
k=1

(αn + βn)− αn
n∑
k=1

(β
α

)k
− βn

n∑
k=1

(α
β

)k]
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=
1

(x2 + 4y)

[
n(αn + βn))− αnβ

α

(
1− (βα)n

1− (βα)

)
− βnα

β

(
1− (αβ )n

1− (αβ )

)]
(by using table1,m = 0)

=
1

(x2 + 4y)

[
n(αn + βn))−

(
αn − βn

α− β

)
(α+ β)

]
=

nl
(H)
n (x, y)− xf (H)

n (x, y)
(x2 + 4y)

(by using (1.4) and (1.5)) .

The proof of (1.2) is similar to that of (1.1).

(1.3) :
n∑
k=1

l
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

(αk + βk)
(
αn−k − βn−k

α− β

)

=
1

(α− β)

[ n∑
k=1

(αn − βn)− βn
n∑
k=1

(α
β

)k
+ αn

n∑
k=1

(β
α

)k]
=

n∑
k=1

(αn − βn
α− β

)
− α 1

(α− β)

(αn − βn
α− β

)
+ β

1
(α− β)

(αn − βn
α− β

)
(by using table1, m = 0 and by direct simplification)

= (n− 1)f (H)
n (x, y)

(by using (1.4)) .

The proof of (1.4) is similar to that of (1.3).

Theorem 2 : The convolution identities at the level m = 1 are

(2.1)
n∑
k=1

kf
(H)
k (x, y)f (H)

n−k(x, y) =
n(n+ 1)l(H)

n (x, y)
2(x2 + 4y)

−
nf

(H)
n+1(x, y)

(x2 + 4y)

(2.2)
n∑
k=1

k l
(H)
k (x, y)l(H)

n−k(x, y) =
n(n+ 1)l(H)

n (x, y)
2

+ nf
(H)
n+1(x, y)

(2.3)
n∑
k=1

kf
(H)
k (x, y)l(H)

n−k(x, y) =
n(n+ 1)f (H)

n (x, y)
2

−
[nxfHn+1 + 2(n+ 1)yfHn (x, y]

(x2 + 4y)

(2.4)
n∑
k=1

kl
(H)
k (x, y)f (H)

n−k(x, y) =
n(n+ 1)f (H)

n (x, y)
2

+
[nxfHn+1 + 2(n+ 1)yfHn (x, y]

(x2 + 4y)
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Proof:

(2.1) :
n∑
k=1

k f
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

k

(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2
[ n∑
k=1

k(αn + βn)− αn
n∑
k=1

k
(β
α

)k
− βn

n∑
k=1

k
(α
β

)k]
=

1
(x2 + 4y)

[n(n+ 1)
2

l(H)
n (x, y)− αn+2

(α− β)2
(
n
βn+2

αn+2
− (n+ 1)

βn+1

αn+1
+
β

α

)
− βn+2

(α− β)2
(
n
αn+2

βn+2
− (n+ 1)

αn+1

βn+1
+
α

β

)]
(by using table1, m = 1)

=
1

(x2 + 4y)

[n(n+ 1)
2

l(H)
n (x, y))− n

(α− β)2
(
l
(H)
n+2(x, y) + yl(H)

n (x, y)
)]

(by using (1.4) and (1.5))

=
n(n+ 1)

2(x2 + 4y)
l(H)
n (x, y)− n

(x2 + 4y)
f

(H)
n+1(x, y)

(by repeated deductions using (1.1) , (1.2) and (1.3))

The proof of (2.2) is similar to that of (2.1).

(2.3) :
n∑
k=1

k l
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

k(αk + βk)
(αn−k − βn−k

α− β

)
=

[ n∑
k=1

k
(αn − βn
α− β

)
+

αn

α− β

n∑
k=1

k
(β
α

)k
− βn

α− β

n∑
k=1

k
(α
β

)k]

=
[n(n+ 1)

2
f (H)
n (x, y) +

αn+2

(α− β)3
(
n
βn+2

αn+2
− (n+ 1)

βn+1

αn+1
+
β

α

)
− βn+2

(α− β)3
(
n
αn+2

βn+2
− (n+ 1)

αn+1

βn+1
+
α

β

)]
(by using table1, m = 1)

=
[n(n+ 1)

2
f (H)
n (x, y))− 1

(x2 + 4y)

(
nf

(H)
n+2(x, y) + (n+ 2)yf (H)

n (x, y)
)]

( by using (1.4) and (1.5))

=
n(n+ 1)

2
f (H)
n (x, y))− 1

(x2 + 4y)

[
nxf

(H)
n+1(x, y) + 2(n+ 1)yf (H)

n (x, y)
]

(by using (1.1) )

The proof of (2.4) is similar to that of (2.3).
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3. The Convolution Identities at the Levels m = 2 and m = 3

In this section, we continue the computation of the Convolution identities at higher

levels.

Theorem 3 : The convolution identities at the level m = 2 are

(3.1)
n∑
k=1

k2f
(H)
k (x, y)f (H)

n−k(x, y)

=
n(n+ 1)(2n+ 1)

6(x2 + 4y)
l(H)
n (x, y)− [n2(x2 + 4y) + 4ny]

(x2 + 4y)2
f

(H)
n+1(x, y) +

2xy(n+ 1)
(x2 + 4y)2

fHn (x, y)

(3.2)
n∑
k=1

k2l
(H)
k (x, y)l(H)

n−k(x, y)

=
n(n+ 1)(2n+ 1)

6
l(H)
n (x, y) +

[n2(x2 + 4y) + 4ny]
(x2 + 4y)

f
(H)
n+1(x, y)− 2xy(n+ 1)

(x2 + 4y)
fHn (x, y)

(3.3)
n∑
k=1

k2f
(H)
k (x, y)l(H)

n−k(x, y)

=
n(n+ 1)(2n+ 1)

6
f (H)
n (x, y)−

n[nxfHn+1(x, y) + 2(n+ 1)yfHn (x, y)]
(x2 + 4y)

(3.4)
n∑
k=1

k2l
(H)
k (x, y)f (H)

n−k(x, y)

=
n(n+ 1)(2n+ 1)

6
f (H)
n (x, y) +

n[nxfHn+1(x, y) + 2(n+ 1)yfHn (x, y)]
(x2 + 4y)

Proof :

(3.1) :
n∑
k=1

k2 f
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

k2

(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2
[ n∑
k=1

k2(αn + βn)− αn
n∑
k=1

k2
(β
α

)k
− βn

n∑
k=1

k2
(α
β

)k]
=

1
(x2 + 4y)

[n(n+ 1)(2n+ 1)
6

l(H)
n (x, y)

+
αn+3

(α− β)3
(
n2β

n+3

αn+3
− (2n2 + 2n− 1)

βn+2

αn+2
+ (n+ 1)2

βn+1

αn+1
− β2

α2
− β

α

)
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− βn+3

(α− β)2
(
n2α

n+3

βn+3
− (2n2 + 2n− 1)

αn+2

βn+2
+ (n+ 1)2

αn+1

βn+1
− α2

β2
− α

β

)]
(by using table1, m = 2)

=
1

(x2 + 4y)

[n(n+ 1)(2n+ 1
6

l(H)
n (x, y)

]
− 1

(α− β)2
[
n2
(αn+3 − βn+3

α− β

)
− (2n2 + 2n− 1)αβ

(αn+1 − βn+1

α− β

)
+ (n+ 1)2f (H)

n−1(x, y)(αβ)2
(αn−1 − βn−1

α− β

)
+ (αβ)2

(αn−1 − βn−1

α− β

)
+ (αβ)

(αn+1 − βn+1

α− β

)]
=

1
(x2 + 4y)

[n(n+ 1)(2n+ 1
6

l(H)
n (x, y)

]
− 1

(α− β)2
[
n2f

(H)
n+3 + (2n2 + 2n− 1)yf (H)

n+1(x, y) + (n+ 1)2y2f
(H)
n−1(x, y)

+ y2f
(H)
n−1(x, y)− yf (H)

n+1(x, y)
]

( by using (1.4) and (1.5))

=
n(n+ 1)(2n+ 1)

6(x2 + 4y)
l(H)
n (x, y)− 1

(x2 + 4y)2
[
(n2(x2 + 4y) + 4ny)f (H)

n+1(x, y)

− 2xy(n+ 1)f (H)
n (x, y)

]
(by repeated deductions using (1.1) , (1.2) and (1.3))

The proof of (3.2) is similar to that of (3.1).

(3.3) :
n∑
k=1

k2 l
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

k2(αk + βk)
(αn−k − βn−k

α− β

)
=

1
α− β

[ n∑
k=1

k2(αn − βn) + αn
n∑
k=1

k2
(β
α

)k
− βn

n∑
k=1

k2
(α
β

)k]
=

[n(n+ 1)(2n+ 1)
6

f (H)
n (x, y)

− αn+3

(α− β)4
(
n2β

n+3

αn+3
− (2n2 + 2n− 1)

βn+2

αn+2
+ (n+ 1)2

βn+1

αn+1
− β2

α2
− β

α

)
− βn+3

(α− β)4
(
n2α

n+3

βn+3
− (2n2 + 2n− 1)

αn+2

βn+2
+ (n+ 1)2

αn+1

βn+1
− α2

β2
− α

β

)]
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(by using table1, m = 2)

=
[n(n+ 1)(2n+ 1)

6
f (H)
n (x, y)

]
− 1

(α− β)4
[
n2(αn+3 + βn+3)− (2n2 + 2n− 1)αβ(αn+1 + βn+1)

+ (n+ 1)2(αβ)2(αn−1 + βn−1)− (αβ)2(αn−1 + βn−1)− (αβ)(αn+1 + βn+1)
]

=
[n(n+ 1)(2n+ 1)

6
f (H)
n (x, y)

]
− 1

(x2 + 4y)2
[
n2l

(H)
n+3 + (2n2 + 2n)yl(H)

n+1(x, y) + (n2 + 2n)y2l
(H)
n−1(x, y)

]
( by using (1.4) and (1.5))

=
n(n+ 1)(2n+ 1)

6
f (H)
n (x, y)− n

(x2 + 4y)

[
nxf

(H)
n+1(x, y) + 2(n+ 1)yf (H)

n (x, y)
]

(by repeated deductions using (1.1) , (1.2) and (1.3))

The proof of (3.4) is similar to that of (3.3).

Theorem 4 : The convolution identities at the level m = 3 are

(4.1)
n∑
k=1

k3f
(H)
k (x, y)f (H)

n−k(x, y)

=
n2(n+ 1)2

4(x2 + 4y)
l(H)
n (x, y)− [n3(x2 + 4y) + 6n2y]

(x2 + 4y)2
f

(H)
n+1(x, y)− (n2 + n)3xy

(x2 + 4y)2
fHn (x, y)

(4.2)
n∑
k=1

k3l
(H)
k (x, y)l(H)

n−k(x, y)

=
n2(n+ 1)2

4
l(H)
n (x, y) +

[n3(x2 + 4y) + 6n2y]
(x2 + 4y)

f
(H)
n+1(x, y)− (n2 + n)3xy

(x2 + 4y)
fHn (x, y)

(4.3)
n∑
k=1

k3l
(H)
k (x, y)f (H)

n−k(x, y)

=
n2(n+ 1)2

4
f (H)
n (x, y)− 1

(x2 + 4y)2
[
[n3x(x2 + 4y)− 6nxy]f (H)

n+1(x, y)

+[2n3y(x2 + 4y) + 3n2y(x2 + 4y) + 2y(x2 + 4y) + 3y(nx2 − 4y)]f (H)
n (x, y)

]

(4.4)
n∑
k=1

k3f
(H)
k (x, y)l(H)

n−k(x, y)

=
n2(n+ 1)2

4
f (H)
n (x, y) +

1
(x2 + 4y)2

[
[n3x(x2 + 4y)− 6nxy]f (H)

n+1(x, y)

+ [2n3y(x2 + 4y) + 3n2y(x2 + 4y) + 2y(x2 + 4y) + 3y(nx2 − 4y)]f (H)
n (x, y)

]
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Proof:

(4.1) :
n∑
k=1

k3 f
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

k3

(
αk − βk

α− β

)(
αn−k − βn−k

α− β

)

=
1

(α− β)2
[ n∑
k=1

k3(αn + βn)− αn
n∑
k=1

k3
(β
α

)k
− βn

n∑
k=1

k3
(α
β

)k]
=

1
(x2 + 4y)

[n2(n+ 1)2

4
l(H)
n (x, y)

− αn+4

(α− β)6
(
n3β

n+4

αn+4
+ (−3n3 − 3n2 + 3n− 1)

βn+3

αn+3

+ (3n3 + 6n2 − 4)
βn+2

αn+2
+ (−n3 − 3n2 − 3n− 1)

βn+1

αn+1
+
β3

α3
+ 4

β2

α2
+
β

α

)
− βn+4

(α− β)6
(
n3α

n+4

βn+4
+ (−3n3 − 3n2 + 3n− 1)

αn+3

βn+3

+ (3n3 + 6n2 − 4)
αn+2

βn+2
+ (−n3 − 3n2 − 3n− 1)

αn+1

βn+1
+
α3

β3
+ 4

α2

β2
+
α

β

)]
(by using table1, m = 3)

=
n2(n+ 1)2

4(x2 + 4y)
l(H)
n (x, y)− 1

(α− β)6
[
n3(αn+4 + βn+4)

+ (−3n3 − 3n2 + 3n− 1)αβ(αn+2 + βn+2) + (3n3 + 6n2 − 4)(αβ)2(αn + βn)

+ (−n3 − 3n2 − 3n− 1)(αβ)3(αn−2 + βn−2) + (αβ)3(αn−2 + βn−2)

+ 4(αβ)2(αn + βn) + αβ(αn+2 + βn+2)
]

( by using (1.4) and (1.5))

=
n2(n+ 1)2

4(x2 + 4y)
l(H)
n (x, y)− 1

(α− β)6
[
n3l

(H)
n+4 + (3n3 + 3n2 − 3n)yl(H)

n+2(x, y)

+ (3n3 + 6n2)y2l(H)
n (x, y) + (n3 + 3n2 + 3n)y3l

(H)
n−2(x, y)

]
=

n2(n+ 1)2

4(x2 + 4y)
l(H)
n (x, y)− 1

(x2 + 4y)2
[
(n3(x2 + 4y) + 6n2y)f (H)

n+1(x, y)

−((n2 + n)3xy)f (H)
n (x, y)]

]
(by repeated deductions using (1.1) , (1.2) and (1.3))

The proof of (4.2) is similar to that of (4.1).

(4.3) :
n∑
k=1

k3 l
(H)
k (x, y)f (H)

n−k(x, y) =
n∑
k=1

k3(αk + βk)
(αn−k − βn−k

α− β

)
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=
1

α− β

[ n∑
k=1

k3(αn − βn) + αn
n∑
k=1

k3
(β
α

)k
− βn

n∑
k=1

k3
(α
β

)k]
=

[n2(n+ 1)2

4
f (H)
n (x, y)

+
αn+4

(α− β)5
(
n3β

n+4

αn+4
+ (−3n3 − 3n2 + 3n− 1)

βn+3

αn+3
+ (3n3 + 6n2 − 4)

βn+2

αn+2

+ (−n3 − 3n2 − 3n− 1)
βn+1

αn+1
+
β3

α3
+ 4

β2

α2
+
β

α

)
− βn+4

(α− β)5
(
n3α

n+4

βn+4
+ (−3n3 − 3n2 + 3n− 1)

αn+3

βn+3
+ (3n3 + 6n2 − 4)

αn+2

βn+2

+ (−n3 − 3n2 − 3n− 1)
αn+1

βn+1
+
α3

β3
+ 4

α2

β2
+
α

β

)]
(by using table1, m = 3)

=
[n2(n+ 1)2

4
f (H)
n (x, y)

]
− 1

(α− β)4
[
n3
(αn+4 − βn+4

α− β

)
+ (3n3 + 3n2 − 3n+ 1)αβ

(αn+2 − βn+2

α− β

)
+ (3n3 + 6n2 − 4)(αβ)2

(αn − βn
α− β

)
+ (n3 + 3n2 + 3n− 1)(αβ)3

(αn−2 − βn−2

α− β

)
− (αβ)3

(αn−2 − βn−2

α− β

)
− 4(αβ)2

(αn − βn
α− β

)
− (αβ)

(αn+2 − βn+2

α− β

)]
( by using (1.4) and (1.5))

=
[n2(n+ 1)2

4
f (H)
n (x, y)

]
− 1

(x2 + 4y)2
[
n3f

(H)
n+4 + (3n3 + 3n2 − 3n+ 2)yf (H)

n+2(x, y)

+ (3n3 + 6n2 − 8)y2f (H)
n (x, y) + (n3 + 3n2 + 3n+ 2)y3f

(H)
n−2(x, y)

]
=

n2(n+ 1)2

4
f (H)
n (x, y)− n

(x2 + 4y)2
[
[n3x(x2 + 4y)− 6nxy]f (H)

n+1(x, y)

+ 2n3y(x2 + 4y) + 3n2y(x2 + 4y) + 2y(x2 + 4y) + 3y(nx2 − 4y)f (H)
n (x, y)

]
(by repeated deductions using (1.1) , (1.2) and (1.3))

The proof of (4.4) is similar to that of (4.3). The same procedure of employing general-

ized Bernouli identity can be applied to compute convolution identities at any level.
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