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Abstract

In this paper in a systematic fashion a mixed cubature rule in double variable has
been brought into focus which is of precision five. As a matter of fact here anti-
Gauss 3-point cubature rule and Fejer’s second 3-point cubature rule have been
composed of convexly in two dimensions where each rule possesses a precision 3.
With the aid of an adaptive cubature algorithm this mixed cubature rule has been
strengthen up by fixing up a termination criterion which was shown by evaluating
some test integrals.

1. Introduction

The centre of interest of this current proposed work is primarily laid upon the following
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discussion. Suppose we wish to approximate the area of the region under the surface

f(x, y), where f(x, y) does not possess large functional variations and it is sufficiently

well behaved and defined in a prescribed domain [a, b]× [c, d], then we move forward as

follows.

Let I(f) be the approximation to the integral∫ b

a

∫ d

c
f(x, y)dxdy ≈

n∑
i=0

m∑
j=0

wiwjf(xi, yj). (1.1)

Now our goal is to evaluate the above integral in such a way such that a better result

will be achieved minimizing the error and with a less computation with comfort and

ease. Some of the proposed works are cited in [8, 15, 2, 1, 3, 9].

R. N. Das and G. Pradhan [6, 7] in 1996 played the big role and lead role to establish

a new quadrature rule which is called the mixed quadrature rule. Initially they took

Simpson’s 1
3 rule and Gauss-Legendre 2-point rule each having precision 3 to produce a

mixed quadrature rule. They were quite brilliant in showing that mixed rule is dominant

over the corresponding constituent rules. In the same tune many other mixed quadrature

rules were developed by several authors [4, 5, 12, 13, 11].

Here, in this present development, P. Patra and R. B. Dash are first to use anti- Gaus-

sian rule to develop an open mixed cubature rule in two dimensions blending two other

open type rules. Previously many mixed quadrature rules [16, 17, 14] in one dimension

were formed with special reference to anti-Gauss rule [10]. Also an adaptive cubature

algorithm is devised to boost up the mixed rule with the numerical evaluation which

was reflected in Table-2.

2. Framing of Open type Quadrature Rules in Two Dimensions

Let us consider the integral

I(f) =

∫ b

a

∫ d

c
f(x, y)dxdy =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy (2.1)

in two dimensions where f(x, y) is defined over the domain [−1, 1]× [−1, 1].

Now we can bring back anti-Gauss 3-point rule for approximating (2.1) as

I(f) =

∫ b

a

∫ d

c
f(x, y)dxdy =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy ≈ R2

aG3
(f)
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where,

R2
aG3

(f) =
1

169

[
256f(0, 0) + 25

{
f

(
−
√

13

15
,−
√

13

15

)

+f

(
−
√

13

15
,

√
13

15

)
+ f

(√
13

15
,−
√

13

15

)
+ f

(√
13

15
,

√
13

15

)}

+80

{
f

(
−
√

13

15
, 0

)
+ f

(√
13

15
, 0

)
+ f

(
0,−

√
13

15

)
+ f

(
0,

√
13

15

)}]

(2.2)

In the same approach the Fejer’s second 3-point rule for approximating (2.1) is derived

as

I(f) =

∫ b

a

∫ d

c
f(x, y)dxdy =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy ≈ R2

2F3
(f)

where,

R2
2F3

(f) =
4

9

[
f(0, 0) + f

(
− 1√

2
,− 1√

2

)
+ f

(
− 1√

2
,

1√
2

)
+f

(
1√
2
,− 1√

2

)
+ f

(
1√
2
,

1√
2

)
+ f

(
− 1√

2
, 0

)
+f

(
1√
2
, 0

)
+ f

(
0,− 1√

2

)
+ f

(
0,

1√
2

)]
. (2.3)

Let us expand the exact integral1 as given in (2.1) using Maclaurin’s expansion of

functions in two dimensions.

I(f) =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy

=

∫ 1

−1

∫ 1

−1

[
f(0, 0) +

{
x
∂f(0, 0)

∂x
+ y

∂f(0, 0)

∂y

}
+

1

2!

{
x2
∂2f(0, 0)

∂x2
+ 2xy

∂2f(0, 0)

∂x∂y
+ y2

∂2f(0, 0)

∂y2

}

1The function f(x, y) is continuously differentiable in the domain [−1, 1] × [−1, 1].
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+
1

3!

{
x3
∂3f(0, 0)

∂x3
+ 3x2y

∂3f(0, 0)

∂x2∂y
+ 3xy2

∂3f(0, 0)

∂x∂y2
+ y3

∂2f(0, 0)

∂y3

}
+

1

4!

{
x4
∂4f(0, 0)

∂x4
+ 4x3y

∂4f(0, 0)

∂x3∂y
+ 6x2y2

∂4f(0, 0)

∂x2∂y2
+ 4xy3

∂4f(0, 0)

∂x∂y3

+y4
∂4f(0, 0)

∂y4

}
+

1

5!

{
x5
∂5f(0, 0)

∂x5
+ 5x4y

∂5f(0, 0)

∂x4∂y
+ 10x3y2

∂5f(0, 0)

∂x3∂y2
+ 10x2y3

∂5f(0, 0)

∂x2∂y3

+5xy4
∂5f(0, 0)

∂x∂y4
+ y5

∂5f(0, 0)

∂y5

}
+

1

6!

{
x6
∂5f(0, 0)

∂x6
+ 6x5y

∂6f(0, 0)

∂x5∂y
+ 15x4y2

∂6f(0, 0)

∂x4∂y2
+ 20x3y3

∂6f(0, 0)

∂x3∂y3

+15x2y4
∂6f(0, 0)

∂x2∂y4
+ 6xy5

∂6f(0, 0)

∂x∂y5
+ y6

∂6(0, 0)

∂y6

}
+ · · ·

]
dxdy.

Integration yields

I(f) =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy

= 4f(0, 0) +
4

3× 2!

[
∂2f(0, 0)

∂x2
+
∂2f(0, 0)

∂y2

]
+

1

4!

[
4

5

{
∂4f(0, 0)

∂x4
+
∂4f(0, 0)

∂y4

}
+

8

3

}
∂4f(0, 0)

∂x2∂y2

}]
+

4

6!

[
1

7

{
∂6f(0, 0)

∂x6
+
∂6f(0, 0)

∂y6

}
+

{
∂6f(0, 0)

∂x4∂y2
+
∂6f(0, 0)

∂x2∂y4

}]
+ · · ·

(2.4)

Equation (2.4) may be re-phrased in a bit simplified notation as

I(f) =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy

= 4f(0, 0) +
2

3
[f2,0(0, 0) + f0,2(0, 0)] +

1

30
[f4,0(0, 0) + f0,4(0, 0)]

+
1

9
f2,2(0, 0) +

4

7!
[f6,0(0, 0) + f0,6(0, 0)] +

1

180
[f4,2(0, 0) + f2,4(0, 0)] + · · ·

(2.5)
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3. Casting of the Mixed Cubature Rule of Precision Five

Let E2
aG3

(f) and E2
2F3

(f) stood for the error terms in approximating the integral I(f)

with the aid of the rules (2.2) and (2.3) respectively. Then

I(f) = R2
aG3

(f) + E2
aG3

(f) (3.1)

I(f) = R2
2F3

(f) +R2
2F3

(f) (3.2)

Assuming f(x, y) to be continuously differentiable in [−1, 1] × [−1, 1] and evaluating

R3
aG3

(f), R2
2F3

(f) employing Maclaurin’s series expansion as we did in (2.4) we get

E2
aG3

(f) = I(f)−R2
aG3

(f)

= − 2

135
[f4,0(0, 0) + f0,4(0, 0)]− 127

212625
[f6,0(0, 0) + f0,6(0, 0)]

− 1

405
[f4,2(0, 0) + f2,4(0, 0)]− · · ·

or

E2
aG3

(f) = −
[

2

135
[f4,0(0, 0) + f0,4(0, 0)] +

127

212625
[f6,0(0, 0) + f0,6(0, 0)]

+
1

405
[f4,2(0, 0) + f2,4(0, 0)] + · · ·

]
(3.3)

which is identical in measure but of opposite in sign to the Gauss-Legendre 2-point rule

in two dimension as derived in [9].

Next, in a similar manner we estimate the error of Fejer’s second 3-point rule in two

dimensions as follows.

E2
2F3

(f) = I(f)−R2
2F3

(f)

= − 1

180
[f4,0(0, 0) + f0,4(0, 0)] +

1

3024
[f6,0(0, 0) + f0,6(0, 0)]

+
1

1080
[f4,2(0, 0) + f2,4(0, 0)] + · · ·

(3.4)

From (3.3) and (3.4) it is revealed that each of the rules (2.2) and (2.3) is of precision

3.
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Now multiplying (3.1) by 3 and (3.2) by 8 respectively and then summing the outcomes

we attain

Imix(f) =
1

11
[3R2

aG3
(f) + 8R2

2F3
(f)] +

1

11
[3E2

aG3
(f) + 8E2

2F3
(f)]

or

Imix(f) = R2
aG32F3

(f) + E2
aG32F3

(f) (3.5)

where

R2
aG32F3

(f) =
1

11
[3R2

aG3
(f) + 8R2

2F3
(f)] (3.6)

and

E2
aG32F3

(f) =
1

11
[3E2

aG3
(f) + 8E2

2F3
(f)] (3.7)

Equation (3.6) expresses the desired mixed cubature rule for approximating I(f) and

equation (3.7) is the error generated by the rule (3.6). Hence

E2
aG32F3

(f) =
11

141750
[f6,0(0, 0) + f0,6(0, 0)] + · · · (3.8)

which shows that the mixed cubature rule R2
aG32F3

(f) has degree of exactness equal

to 5, i. e.; it integrates all polynomials of degree ≤ 5 in x and y, as the first term of

E2
aG32F3

(f) starts from 6th order partial derivative. The rule (3.6) can be entitled as

an open type mixed rule in two dimensions as it is composed of on the platform of two

different types of open cubature rules carrying out identical precision (i. e.; precision 3).

4. Error Analysis

Theorem 4.1 : When f(x, y) is given as a continuously differentiable function in

[−1, 1]× [−1, 1] then the error E2
aG32F3

(f) executed with the rule R2
aG32F3

(f) is given

|E2
aG32F3

(f)| ≈ 11

141750
|[f6,0(0, 0) + f0,6(0, 0)]|.

Proof : Directly follows from equation (3.8).

Theorem 4.2 : The bounds for the truncation error E2
aG32F3

(f) = I(f) − R2
aG32F3

(f)

is presented as

|E2
aG32F3

(f)| ≤ 2M

495
|ξ2 − ξ1| × |η2 − η1|
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where

M = max
−1 ≤ x < 1
−1 ≤ y ≤ 1

|[f5,0(x, 0) + f0,5(0, y)]|.

Proof : In the light of (3.3) and (3.4) we hold

E2
aG3

(f) ≈ − 2

135
[f4,0(ξ1, η1) + f0,4(ξ1, η1)], (ξ1, η1) ∈ [−1, 1]× [−1, 1]

E2
2f3

(f) ≈ − 1

180
[f4,0(ξ2, η2) + f0,4(ξ2, η2)], (ξ2, η2) ∈ [−1, 1]× [−1, 1].

As per our sense of knowledge

E2
aG32F3

(f) =
1

11
[3E2

aG3
(f) + 8E2

2F3
(f)]

=
1

11

[
− 2

45
{f4,0(ξ1, 0) + f0,4(0, η1)}+

2

45
{f4,0(ξ2, 0) + f0,4(0, η2)}

]
=

2

495
[{f4,0(ξ2, 0) + f0,4(0, η2)} − {f4,0(ξ1, 0) + f0,4(0, η1)}]

=
2

495

∫ η2

η1

∫ ξ2

ξ1

[f5,0(x, 0) + f0,5(0, y)]dxdy

(supposing ξ1 < ξ2 and η1 < η2).

Accordingly

|E2
aG32F3

(f)| ≈
∣∣∣∣ 2

495

∫ η2

η1

∫ ξ2

ξ1

[f5,0(x, 0) + f0,5(0, y)]dxdy

∣∣∣∣
≤ 2

495

∫ η2

η1

∫ ξ2

ξ1

|[f5,0(x, 0) + f0,5(0, y)]|dxdy

∵ f(x, y) takes the way over the closed and bounded rectangle [−1, 1]× [−1, 1] so it is

compact and attains its maximum over the domain [−1, 1]× [−1, 1]. So

|E2
aG32F3

(f)| ≤ 2

495

∫ η2

η1

∫ ξ2

ξ1

dxdy,

where

M = max
−1 ≤ x < 1
−1 ≤ y ≤ 1

|[f5,0(x, 0) + f0,5(0, y)]|

=
2M

495
|(ξ2 − ξ1)× (η2 − η1)|.
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A theoretical error bound is thus estimated from the above theorem as (ξ1, η1) and

(ξ2, η2) are unknown points in [−1, 1] × [−1, 1]. Again it drove up the result that the

error in the approximation will come under a very less margin as the distance between

the points (ξ1, η1) and (ξ2, η2) goes small.

Corollary 4.1 : The error bound for the truncation error E2
aG32F3

(f) is given by

|E2
aG32F3

(f)| ≤ 8M

495
.

Proof : From theorem 4.2

|E2
aG32F3

(f)| ≤ 2M

495
|(ξ2 − ξ1)× (η2 − η1)| ∈ [−1, 1]× [−1, 1]

where

M = max
−1 ≤ x < 1
−1 ≤ y ≤ 1

|[f5,0(x, 0) + f0,5(0, y)]|.

Choosing |ξ2 − ξ1| ≤ 2 and |η2 − η1| ≤ 2 we get

|E2
aG32F3

(f)| ≤ 8M

495
.

2

5. Adaptive Cubature Algorithm for Evaluation of Double Integrals

To evaluate double integrals over any rectangle using adaptive cubature, we adopt the

following four steps algorithm.

Input : Function f : [a, b]× [c, d]→ R and the prescribed tolerance ε.

Output : An approximation Q(f) to the integral I(f) =
∫ b
a

∫ d
c f(x, y)dxdy such that

|Q(f)− I(f)| ≤ ε.
Step 1 : The mixed cubature rule R2

aG32F3
(f) is implemented over the rectangle [a, b]×

[c, d] which has four vertices {(a, c), (b, c), (b, d) and (a, d)} to get the approximation

of the double integral I(f) =
∫ b
a

∫ d
c f(x, y)dxdy. This approximation is designated as

R2
aG32F3

(f[a,b]×[c,d]).

Step 2 : The rectangle of integration [a, b] × [c, d] is split into four equal pieces of

rectangles A1, A2, A3, A4 having corner points {(a, c), (m1, c), (m1,m2), (a,m2)},
{(m1, c), (b, c), (b,m2), (m1,m2)}, {(m1,m2), (b,m2), (b, d), (m1, d)} and
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{(a,m2), (m1,m2), (m1, d), (a, d)} respectively, where m1 = a+b
2 and m2 = c+d

2 . The

mixed cubature rule (R2
aG32F3

(f) is applied over each small rectangle to approximate the

double integrals I1(f) =
∫m1

a

∫m2

c f(x, y)dxdy,, I2(f) =
∫m1

b

∫m2

c f(x, y)dxdy, I3(f) =∫ b
m1

∫ d
m2
f(x, y)dxdy, I4(f) =

∫m1

a

∫ d
m2
f(x, y)dxdy, respectively. The approximated val-

ues are denoted by R2
aG32F3

(f ↑[a,m1]×[c,m2]), R
2
aG32F3

(f ↑[m1,b]×[c,m2]),

R2
aG32F3

(f ↑[m1,b]×[m2,d]) and R2
aG32F3

(f ↑[a,m1]×[m2,d]) respectively.

Step 3 : R2
aG32F3

(f ↑[a,m1]×[c,m2]) + R2
aG32F3

(f ↑[m1,b]×[c,m2]) + R2
aG32F3

(f ↑[m1,b]×[m2,d]

) +R2
aG32F3

(f ↑[a,m1]×[m2,d]) is compared with R2
aG32F3

(f[a,b]×[c,d]) to make the estimate

of the magnitude of the error in R2
aG32F3

(f ↑[a,m1]×[c,m2]) + R2
aG32F3

(f ↑[m1,b]×[c,m2]) +

R2
aG32F3

(f ↑[m1,b]×[m2,d]) +R2
aG32F3

(f ↑[a,m1]×[m2,d]).

Step 4 : If |estimated error| ≤ ε
2 (termination criterion) then R2

aG32F3
(f ↑[a,m1]×[c,m2]

)+R2
aG32F3

(f ↑[m1,b]×[c,m2])+R2
aG32F3

(f ↑[m1,b]×[m2,d])+R2
aG32F3

(f ↑[a,m1]×[m2,d]) is under

taken as an approximation to the double integral I(f) =
∫ b
a

∫ d
c f(x, y)dxdy. Otherwise

the same strategy is put into action to each of the four rectangles allowing each piece

of rectangles a tolerance ε
2 . If the termination criterion does not meet its goal on one

or more of the rectangles, then let us go on splitting the rectangles further into four

sub-rectangles and also we repeat the entire process again. Upon acheiving the given

accuracy the process stops and the addition of all accepted values produces the required

approximation Q(f) to the double integral I(f) so as to get |Q(f)− I(f)| ≤ ε.
N.B/ : This algorithm is pretty useful for any cubature rule to evaluate real definite

integrals in two dimensions in adaptive integration scheme.
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6. Numerical Verification

Table 1 : Mixed Cubature Rule (R2
aG32F3

(f)) and anti-Gauss 3-point Rule (R2
aG3

(f))

and Fejer’s second 3-point Rule (R2
2F3

(f)) in approximating some real Definite

integrals in non-adaptive environment: A numerical comparison

Approximate Value (Q(f))
Integrals Exact Value R2

aG3
(f) R2

2F3
(f) R2

aG32F3
(f)∫ 1

−1

∫ 1
−1 e

x+ydxdy 5.52439138 5.56070044 5.51054864 5.52422636∫ 1
−1

∫ 1
−1 e

−(x+y2)dxdy 2.23098514 2.41527554 2.17672906 2.24178719∫ 1
0

∫ 1
0

sin2(x+y)
(x+y) dxdy 0.61326603 0.61448059 0.61280975 0.61326544∫ 1

0

∫ 2
1 x

2ydxdy 0.40546510 0.40635451 0.40502277 0.40538597∫ 1
0

∫ 2
1

x
x2+y2

dxdy 0.19832051 0.19946490 0.19790083 0.19832740∫ 1
0

∫ 1
0

1
(x+y+1)2

dxdy 0.28768207 0.28928138 0.28706102 0.28766657

Table 2 : Mixed Cubature Rule (R2
aG32F3

(f)) and anti-Gauss 3-point Rule (R2
aG3

(f))

and Fejer’s second 3-point Rule (R2
2F3

(f)) in approximating some real definite

integrals (given in Table 1) in adaptive environment: A numerical comparison

Approximate Value (Q(f))
Integrals R2

aG3
(f) # Steps R2

2F3
(f) # Steps R2

aG32F3
(f) # Steps∫ 1

−1

∫ 1
−1 e

x+ydxdy 5.524401353 21 5.524387641 21 5.524391330 05∫ 1
−1

∫ 1
−1 e

−(x2+y2)dxdy 2.230980663 37 2.230982171 21 2.230985009 05∫ 1
0

∫ 1
0

sin2(x+y)
(x+y)

dxdy 0.613264736 05 0.613258734 05 0.6123260437 01∫ 1
0

∫ 2
1 x

ydxdy 0.405478892 09 0.405449591 05 0.405462313 0.5∫ 1
0

∫ 2
1

x
x2+y2 dxdy 0.198324646 05 0.198318966 05 0.198320646 0.1∫ 1

0

∫ 1
0

1
(x+y+1)2

dxdy 0.287684852 09 0.287678586 05 0.287682438 0.1

Note : Here the prescribed tolerance ε = 0.0001.

All the computations are done using 1C’ program.

7. Conclusion

(i) The numerical verification in Table-1 shows the dominance of the mixed cubature

rule R2
aG32F3

(f) over the constituent rules R2
aG3

(f) and R2
2F3

(f) in non-adaptive

environment.
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(ii) Table-2 shows that our adaptive algorithm based on the mixed cubature rule

R2
aG32F3

(f) is converging much faster in order to accomplish our approximation

with the desired accuracy so far the number of steps is concerned.

(iii) Much better result is attained on the foundation of this mixed rule in adaptive as

well as in non-adaptive integration environment than the mixed rule [9] derived

previously, which is the basic notion behind this paper.
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