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Abstract
In this paper, we discuss the common fixed point theorems with the assumption of
weakly compatible and coincidence point of four maps on an upper semi continuous
contractive modulus and (ϕ,ψ) contractive type mappings in complete cone metric
space via cone C−class functions.

1. Introduction and Mathematical Preliminaries

The notion of cone metric space is initiated by Huang and Zhang [2] and also they

discussed some properties of the convergence of sequences and proved the fixed point

theorems of a contraction mapping for cone metric spaces; Any mapping T of a complete

cone metric space X into itself that satisfies, for some 0 ≤ k < 1 , the inequality

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Key Words : Common fixed point,Complete cone metric space, Cone normed space cone C,

Class function.

2010 AMS Subject Classification : Primary 47H10; Secondary 54H25.

c© http: //www.ascent-journals.com

143



144 R. KRISHNAKUMAR & D. DHAMODHARAN

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X has a unique fixed point. Note on (ϕ,ψ) contractive

type mappings and related fixed point are proved by Arslan Hojat Ansari [8]. The

common fixed point theorems with the assumption of weakly compatible and coincidence

point of four maps on an upper semi continuous contractive modulus in complete cone

Banach space are proved by R. Krishnakumar and D. Dhamodharan [4].

In this paper we investigate the common fixed point theorems with the assumption

of (ϕ,ψ) contractive type mappings, weakly compatible and coincidence point of four

maps on an upper semi continuous contractive modulus in complete cone metric space

via cone C−class functions.

Definition 1.1 : Let E be the real Banach space. A subset P of E is called a cone if

and only if:

(b1) P is closed, non empty and P 6= 0

(b2) ax+ by ∈ P for all x, y ∈ P and non negative real numbers a, b

(b3) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and

only if y, x ∈ P . We will write x < y to indicate that x ≤ y but x 6= y, while x, y

will stand for y, x ∈ intP , where intP denotes the interior of P . The cone P is called

normal if there is a number K > 0 such that 0 ≤ x ≤ y implies ‖x| ≤ K‖y‖ for all

x, y ∈ E. The least positive number satisfying the above is called the normal constant.

Example 1.2 [7] : Let K > 1. be given. Consider the real vector space with

E = {ax+ b : a, b ∈ R;x ∈ [1,
1
k
, 1]}

with supremum norm and the cone

P = {ax+ b : a ≥ 0, b ≤ 0}

in E. The cone P is regular and so normal.

Definition 1.3 : Let X be a nonempty set. Suppose the mapping d : X × X → E

satisfies

(b1) d(x, y) = 0 if and only if x = y,
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(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ d(x, y) + d(y, z).

Then (X, d) is called a cone metric space (CMS).

Example 1.4 : Let E = R2

P = {(x, y) : x, y ≥ 0}

X = R and d : X ×X → E such that

d(x, y) = (|x, y|, α|x, y|)

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 1.5 : Let (X, d) be a CMS, x ∈ X and {xn}n≥0 be a sequence in X. Then

{xn}n≥0 converges to x whenever for every c ∈ E with 0� E, there is a natural number

N ∈ N such that d(xn, x)� c for all n ≥ N . It is denoted by limn→∞ xn = x or xn → x.

Definition 1.6 : Let (X, d) be a CMS, x ∈ X and {xn}n≥0 be a sequence in X. {xn}n≥0

is a Cauchy sequence whenever for every c ∈ E with 0 � c, there is a natural number

N ∈ N , such that d(xn, xm)� c for all n,m ≥ N
Definition 1.7 : Let (X, d) be a CMS, x ∈ X and {xn}n≥0 be a sequence in X. (X, d)

is a complete cone normed space if every Cauchy sequence is convergent. Complete cone

normed spaces will be called complete cone metric spaces.

Lemma 1.8 [3] : Let (X, d) be a CMS, P be a normal cone with normal constant K,

and {xn} be a sequence in X. Then

(A) the sequence {xn} converges to x if and only if d(xn, x)→ 0 as n→∞,
(B) the sequence {xn} is Cauchy if and only if d(xn, xm)→ 0 as n,m→∞,
(c) the sequence {xn} converges to x and the sequence {yn} converges to y, then

d(xn, yn)→ d(x, y).

Definition 1.9 : Let f and g be two self maps defined on a set X maps f and g are

said to be commuting of fgx = gfx for all x ∈ X
Definition 1.10 : Let f and g be two self maps defined on a set X maps f and g are

said to be weakly compatible if they commute at coincidence points. that is if fx = gx

forall x ∈ X then fgx = gfx

Definition 1.11 : Let f and g be two self maps on set X. If fx = gx, for some x ∈ X
then x is called coincidence point of f and g
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Lemma 1.12 : Let f and g be weakly compatible self mapping of a set X. If f and g

have a unique point of coincidence, that is w = fx = gx then w is the unique common

fixed point of f and g.

Definition 1.13 : An ultra altering distance function is a function ϕ : P → P which

satisfies

(a) ϕ is continuous.

(b) ϕ(0) > 0.

Definition 1.14 [9]: : A mapping F : P 2 → P is called cone C, class function if it is

continuous and satisfies following axioms:

1. F (s, t) ≤ s;

2. F (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ P .

We denote cone C,class functions as C.
Example 1.15 [9] : The following functions F : P 2 → P are elements of C, for all

s, t ∈ [0,∞):

1. F (s, t) = s, t,

2. F (s, t) = ks, where 0<k<1,

3. F (s, t) = sβ(s), where β : [0,∞)→ [0, 1),

4. F (s, t) = Ψ(s), where Ψ : P → P ,Ψ(0) = 0 ,Ψ(s) > 0 for all s ∈ P with s 6= 0

and Ψ(S) ≤ s for all s ∈ P .,

5. F (s, t) = s, ϕ(s), where ϕ : [0,∞) → [0,∞) is a continuous function such that

ϕ(t) = 0⇔ t = 0;

6. F (s, t) = s, h(s, t), where h : [0,∞) × [0,∞) → [0,∞) is a continuous function

such that h(s, t) = 0⇔ t = 0 for all t, s > 0.

7. F (s, t) = ϕ(s), F (s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is a upper semi

continuous function such that ϕ(0) = 0 and ϕ(t) < t for t > 0.



COMMON FIXED POINT WITH CONTRACTIVE MODULUS... 147

Lemma 1.16 : Let ψ and ϕ are altering distance and ultra altering distance functions

respectively , F ∈ C and {sn} a decreasing sequence in P such that

ψ(sn+1) ≤ F (ψ(sn), ϕ(sn))

for all n ≥ 1. Then lim
n→∞

sn = 0.

2. Main Result

Theorem 2.1 : Let (X, d) be a complete cone metric space with regular cone P such

that d(x, y) ∈ intP . Suppose that the mappings P,Q, S and T are four self maps of

(X, d) such that T (X) ⊆ P (X) and S(X) ⊆ Q(X) and satisfying

ψ(d(Ty, Sx))

≤ F (ψ(ad(Px,Qy) + b{d(Px, Sx) + d(Qy, Ty)}+ c{d(Px, Ty) + d(Qy, Sx)}),

ϕ(ad(Px,Qy) + b{d(Px, Sx) + d(Qy, Ty)}+ c{d(Px, Ty) + d(Qy, Sx)}))

(2.1)

for all x, y ∈ X, where a, b, c ≥ 0 and a+ 2b+ 2c = 1. ψ and ϕ are altering distance and

ultra altering distance functions respectively ,F ∈ C such that ψ(t+ s) ≤ ψ(t) + ψ(s).

Suppose that the pairs {P, S} and {Q,T} are weakly compatible, then P,Q, S and T

have a unique common fixed point.

Proof : Suppose x0 is an arbitrary initial point of X and define the sequence {yn} in

X such that

y2n = Sx2n = Qx2n+1

y2n+1 = Tx2n+1 = Px2n+2

By (2.1) implies that

ψ(d(y2n+1, y2n)) = ψ(d(Tx2n+1, Sx2n))

≤ F (ψ(ad(Px2n, Qx2n+1) + b{d(Px2n, Sx2n) + d(Qx2n, Tx2n+1)}

+c{d(Px2n, Tx2n+1) + d(Qx2n+1, Sx2n)}),

ϕ(ad(Px2n, Qx2n+1) + b{d(Px2n, Sx2n) + d(Qx2n, Tx2n+1)}

+c{d(Px2n, Tx2n+1) + d(Qx2n+1, Sx2n)}))
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≤ F (ψ(ad(y2n−1, y2n) + b{d(y2n−1, y2n) + d(y2n, y2n+1)}

+c{d(y2n−1, y2n+1) + d(y2n, y2n)}), ϕ(ad(y2n−1, y2n)

+b{d(y2n−1, y2n) + d(y2n, y2n+1)}+ c{d(y2n−1, y2n+1) + d(y2n, y2n)}))

≤ F (ψ(ad(y2n−1, y2n) + b{d(y2n−1, y2n) + d(y2n, y2n+1)}

+cd(y2n−1, y2n+1)).ϕ(ad(y2n−1, y2n) + bd(y2n−1, y2n))

+d(y2n, y2n+1)}+ cd(y2n−1, y2n+1)))

≤ F (ψ((a+ b+ c)d(y2n−1, y2n) + (b+ c)d(y2n, y2n+1),

ϕ((a+ b+ c)d(y2n−1, y2n) + (b+ c)d(y2n, y2n+1))

≤ ψ((a+ b+ c)d(y2n−1, y2n) + (b+ c))d(y2n, y2n+1)

V d(y2n+1, y2n) ≤ d(y2n, y2n−1)

d(y2n+1, y2n) ≤ hd(y2n, y2n−1) (2.2)

implies that the sequence {d(y2n+1, y2n)} is monotonic decreasing and continuous. There

exists a real number, say r ≥ 0 such that

lim
n→∞

d(y2n+1, y2n) = r,

as n→∞ equation (2.2) ⇒
ψ(r) ≤ F (ψ(r), ϕ(r))

so, ψ(r) = 0 or ϕ(r) = 0 which is only possible if r = 0 . Thus

lim
n→∞

d(y2n+1, y2n) = 0.

Claim: {y2n} is a Cauchy sequence.

Suppose {y2n} is not a Cauchy sequence.

Then there exists an ε > 0 and sub sequence {ni} and {mi} such that mi < ni < mi+1

d(ymi , yni) ≥ ε and d(ymi , yni−1) ≤ ε (2.3)

ε ≤ d(ymi , yni) ≤ d(ymi , yni−1) + d(yni−1 , yni)

therefore

lim
i→∞

ymi , yni) = ε
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now

ε ≤ d(ymi−1 , yni−1) ≤ d(ymi−1 , ymi) + d(ymi , yni−1)

by taking limit i→∞ we get,

lim
i→∞

d(ymi−1 , yni−1) = ε

from (2.7) and (2.8)

ψ(ε) ≤ ψ(d(ymi , yni)) = ψ(d(Sxmi , Txni))

≤ F (ψ(λ(xmi , xni)), ϕ(λ(xmi , xni)))Φ(λ(xmi , xni))

where implies

ψ(ε) ≤ F (ψ(λ(xmi , xni)), ϕ(λ(xmi , xni))) (2.4)

λ(xmi , xni) = ad(Pxmi , Qxni) + bd(Pxmi , Sxmi) + d(Qxni , Txni),

+ c(d(Pxmi , Txni) + d(Qxni , Sxmi))

= ad(Txmi−1 , Sxni−1) + b)Txmi−1 , Sxmi) + d(Sxni−1 , Txni),

+ c(d(Txmi−1 , Txni) + d(Sxni−1 , Sxmi))

= ad(ymi−1 , yni−1) + bymi−1 , ymi) + d(yni−1 , yni),

c(d(ymi−1 , yni) + d(yni−1 , ymi))

Taking limit as i→∞, we get

lim
i→∞

λ(xmi , xni) = aε+ b0 + 0 + c(ε+ ε)}

lim
i→∞

λ(xmi , xni) ≤ ε

Therefore from (2.4) we have,ψ(ε) ≤ F (ψ(ε), ϕ(ε))

so, ψ(ε) = 0 or ϕ(ε) = 0 This is a contraction because ε > 0 .

Therefore {y2n} is Cauchy sequence in X

Hence {yn} is a Cauchy sequence.

There exists a point l in (X, d) such that

lim
n→∞

{yn} = l , lim
n→∞

S2n = lim
n→∞

Qx2n+1 = l and lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = l
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that is,

lim
n→∞

S2n = lim
n→∞

Qx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = x∗

Since T (X) ⊆ P (X), there exists a point z in X Such that x∗ = Pz then by (1)

ψ(d(Sz, x∗)) ≤ F (ψ(d(Sz, x∗)), ϕ(d(Sz, x∗)))

≤ F (ψ(d(Sz, Tx2n−1) + d(Tx2n−1, x
∗)), ϕ(d(Sz, Tx2n−1) + d(Tx2n−1, x

∗)))

≤ F (ψ(ad(Pz,Qx2n−1) + b{d(Pz, Sz) + d(Qx2n−1, Tx2n−1)}

+ c{d(Pz, Tx2n−1) + d(Qx2n−1, Sz)}+ d(Tx2n−1, x
∗)),

ϕ(ad(Pz,Qx2n−1) + b{d(Pz, Sz) + d(Qx2n−1, Tx2n−1)}

+ c{d(Pz, Tx2n−1) + d(Qx2n−1, Sz)}+ d(Tx2n−1, x
∗)))

Taking the limit as n→∞

ψ(d(Sz, x∗)) ≤ F (ψ(ad(x∗, x∗) + b{d(x∗, x∗) + d(x∗, Sz)}

+ c{d(x∗, x∗) + d(x∗, Sz)}+ d(x∗, x∗)),

ϕ(ad(x∗, x∗) + b{d(x∗, x∗) + d(x∗, Sz)}

+ c{d(x∗, x∗) + d(x∗, Sz)}+ d(x∗, x∗)))

≤ F (ψ(0 + b{d(x∗, Sz) + 0}+ c{0 + d(x∗, Sz)}+ 0

+ (b+ c)d(x∗, Sz)), ϕ(0 + b{d(x∗, Sz) + 0}+ c{0 + d(x∗, Sz)}+ 0

+ (b+ c)d(x∗, Sz)))

Which is a contraction since a+ 2b+ 2c = 1.

therefore Sz = Pz = x∗

Since S(X) ⊆ Q(X) there exists a point w ∈ X such that x∗ = Qw.

By (1)

ψ(d(Sz, x∗)) ≤ ψ(d(Sz, Tw))

≤ F (ψ(ad(Pz,Qw) + b{d(Pz, Sz) + d(Qw, Tw)}

+ c{d(Pz, Tw) + d(Qw,Sw)}), ϕ(ad(Pz,Qw)

+ b{d(Pz, Sz) + d(Qw, Tw)}+ c{d(Pz, Tw) + d(Qw,Sw)}))
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≤ F (ψ(ad(x∗, x∗) + b{d(x∗, x∗) + d(x∗, Tw)}+ c{d(x∗, Tw)

+ d(x∗, x∗)}), ϕ(ad(x∗, x∗) + b{d(x∗, x∗) + d(x∗, Tw)}

+ c{d(x∗, Tw) + d(x∗, x∗)}))

≤ F (ψ(0 + b{0 + d(x∗, Tw)}+ c{d(x∗, Tw) + 0}),

ϕ(0 + b{0 + d(x∗, Tw)}+ c{d(x∗, Tw) + 0}))

F (ψ(d(x∗, Tw)) ≤ F (ψ((b+ c)d(x∗, Tw)), ϕ((b+ c)d(x∗, Tw)))

which is a contradiction since a+ 2b+ 2c = 1.

therefore Tw = Qw = x∗

Thus Sz = Pz = Tw = Qw = x∗

Since P and S are weakly compatible maps,

Then SP (z) = PS(z)

Sx∗ = Px∗

To prove that x∗ is a fixed point of S

Suppose Sx∗ 6= x∗ then by (2.1)

ψ(d(Sx∗, x∗)) ≤ ψ(d(Sx∗, Tx∗))

≤ F (ψ(ad(Px∗, Qw) + b{d(Px∗, Sx∗) + d(Qw, Tw)}+

+ c{d(Px∗, Tw) + d(Qw,Sx∗)}),

ϕ(ad(Px∗, Qw) + b{d(Px∗, Sx∗) + d(Qw, Tw)}+

+ c{d(Px∗, Tw) + d(Qw,Sx∗)}))

≤ F (ψ(ad(Sx∗, x∗) + b{d(Sx∗, Sx∗) + d(x∗, x∗)}+

+ c{d(Sx∗, x∗) + d(x∗, Sx∗)}),

ϕ(ad(Sx∗, x∗) + b{d(Sx∗, Sx∗) + d(x∗, x∗)}+

+ c{d(Sx∗, x∗) + d(x∗, Sx∗)}))

≤ F (ψ(ad(Sx∗, x∗) + b{0 + 0}+ 2cd(Sx∗, x∗)),

ϕ(ad(Sx∗, x∗) + b{0 + 0}+ 2cd(Sx∗, x∗)))

ψ(d(Sx∗, x∗)) ≤ F (ψ((a+ 2c)d(Sx∗, x∗)), ϕ((a+ 2c)d(Sx∗, x∗)))
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Which is a contradiction, Since a+ 2b+ 2c = 1.

Sx∗ = x∗

Hence Sx∗ = Px∗ = x∗ Similarly, Q and T are weakly compatible maps then TQw =

QTw, that is Tx∗ = Qx∗

To prove that x∗ is a fixed point of T.

Suppose Tx∗ 6= x∗ by (2.1)

ψ(d(Tx∗, x∗)) ≤ ψ(d(Sx∗, Tx∗))

≤ F (ψ(ad(Px∗, Qx∗) + b{d(Px∗, Sx∗) + d(Qx∗, Tx∗)}+

+ c{d(Px∗, Tx∗) + d(Qx∗, Sx∗)}), ϕ(ad(Px∗, Qx∗)

+ b{d(Px∗, Sx∗) + d(Qx∗, Tx∗)}+ c{d(Px∗, Tx∗) + d(Qx∗, Sx∗)}))

≤ F (ψ(ad(x∗, Tx∗) + b{d(x∗, x∗) + d(Tx∗, Tx∗)}+ c{d(x∗, Tx∗)

+ d(Tx∗, x∗)}), ϕ(ad(x∗, Tx∗) + b{d(x∗, x∗) + d(Tx∗, Tx∗)}+

+ c{d(x∗, Tx∗) + d(Tx∗, x∗)}))

≤ F (ψ(ad(Tx∗, x∗) + b{0 + 0}+ 2c)Tx∗, x∗)),

ϕ(ad(Tx∗, x∗) + b{0 + 0}+ 2c)Tx∗, x∗)))

ψ(d(Tx∗, x∗)) ≤ F (ψ((a+ 2c)d(Tx∗, x∗)), ϕ((a+ 2c)d(Tx∗, x∗)))

which is a contradiction since a+ 2b+ 2c = 1.

Tx∗ = x∗.

Hence. Tx∗ = Qx∗ = x∗

Thus Sx∗ = Px∗ = Tx∗ = Qx∗ = x∗

That is, x∗ is a common fixed point of P,Q, S and T

To prove that the uniqueness of x∗

Suppose that x∗ and y∗, x∗ 6= y∗ are common fixed points of P,Q, S and T respectively,
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by (2.1) we have,

ψ(d(x∗, y∗)) ≤ ψ(d(Sx∗, Ty∗))

≤ F (ψ(ad(Px∗, Qy∗) + b{d(Px∗, Sx∗) + d(Qy∗, Ty∗)}+

+ c{d(Px∗, T y∗) + d(Qy∗, Sx∗)}), ϕ(ad(Px∗, Qy∗)

+ b{d(Px∗, Sx∗) + d(Qy∗, T y∗)}+

+ c{d(Px∗, T y∗) + d(Qy∗, Sx∗)}))

≤ F (ψ(ad(x∗, y∗) + b{d(x∗, x∗) + d(y∗, y∗)}

+ c{d(x∗, y∗) + d(y∗, x∗)}), ϕ(ad(x∗, y∗)

+ b{d(x∗, x∗) + d(y∗, y∗)}+ c{d(x∗, y∗) + d(y∗, x∗)}))

≤ F (ψ(ad(x∗, y∗) + b{0 + 0}+ c{d(x∗, y∗) + d(y∗, x∗)}),

ϕ(ad(x∗, y∗) + b{0 + 0}+ c{d(x∗, y∗) + d(y∗, x∗)}))

≤ F (ψ((a+ 2c)d(x∗, y∗)), ϕ((a+ 2c)d(x∗, y∗)))

which is a contradiction. Since a+ 2b+ 2c = 1.

therefore x∗ = y∗.

Hence x∗ is the unique common fixed point of P,Q, S and T respectively. 2

Corollary 2.2 : Let (X, d) be a complete cone metric space with regular cone P such

that d(x, y) ∈ intP . Suppose that the mappings P, S and T are three self maps of (X, d)

such that T (X) ⊆ P (X) and S(X) ⊆ P (X) and satisfying

ψ(d(Sx, Ty)) ≤ F (ψ(ad(Px, Py) + b{d(Px, Sy) + d(Px, Ty)}

+c{d(Px, Ty) + d(Py, Sx)}), ϕ(ad(Px, Py)

+b{d(Px, Sy) + d(Px, Ty)}+ c{d(Px, Ty) + d(Py, Sx)}))

(2.5)

for all x, y ∈ X, where ψ and ϕ are altering distance and ultra altering distance functions

respectively, F ∈ C such that ψ(t + s) ≤ ψ(t) + ψ(s), a, b, c ≥ 0 and a + 2b + 2c < 1.

suppose that the pairs {P, S} and {P, T} are weakly compatible, then P, S and T have

a unique common fixed point.

Proof : The proof of the corollary immediate by taking P = Q in the above Theorem

2.1. 2
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Definition 2.3 : A mapping Φ : P ∪ {0} → P ∪ {0} is said to be contractive modulus

if it is continuous and which satisfies

1. Φ(t) = 0 if and only if t = 0

2. Φ(t) ≤ t for t ∈ P

3. Φ(t+ s) ≤ Φ(t) + Φ(s) for t, s ∈ P

Theorem 2.4 : Let (X, d) be a complete cone metric space with regular cone P such

that d(x, y) ∈ intP . Suppose that the mappings P,Q, S and T are four self maps of

(X, d) such that T (X) ⊆ P (X) and S(X) ⊆ Q(X) satisfying

ψ(d(Sx, Ty)) ≤ F (ψ(Φ(λ(x, y))), ϕ(Φ(λ(x, y)))), (2.6)

for all x, y ∈ X, where ψ and ϕ are altering distance and ultra altering distance functions

respectively, F ∈ C such that ψ(t+ s) ≤ ψ(t) + ψ(s) and Φ is contractive modulus.

λ(x, y) = max{d(Px,Qy), d(Px, Sx), d(Qy, Ty), 1
2{d(Px, Ty) + d(Qy, Sx)}}. Suppose

that the pairs {P, S} and {Q,T} are weakly compatible, then P,Q, S and T have a

unique common fixed point.

Proof : Let us take x0 is an arbitrary point of X and define a sequence {y2n} in X

such that

y2n = Sx2n = Qx2n+1, y2n+1 = Tx2n+1 = Px2n+2.

By (2.6) implies that

ψ(d(y2n, y2n+1)) = ψ(d(Sx2n, Tx2n+1))

≤ F (ψ(Φ(λ(x2n, x2n+1))), ϕ(Φ(λ(x2n, x2n+1))))

≤ F (ψ(λ(x2n, x2n+1)), ϕ(λ(x2n, x2n+1)))

= F (ψ(max{d(Px2n, Qx2n+1), d(Px2n, Sx2n), d(Qx2n+1, Tx2n+1),
1
2
{d(Px2n, Tx2n+1) + d(Qx2n+1, Sx2n)}}), ϕ(max{d(Px2n, Qx2n+1),

d(Px2n, Sx2n), d(Qx2n+1, Tx2n+1),
1
2
{d(Px2n, Tx2n+1) + d(Qx2n+1, Sx2n)}})
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= F (ψ(max{d(Tx2n−1, Sx2n), d(Tx2n−1, Sx2n), d(Sx2n, Tx2n+1),
1
2
{d(Tx2n−1, Tx2n+1) + d(Sx2n, Sx2n)}}), ϕ(max{d(Tx2n−1, Sx2n),

d(Tx2n−1, Sx2n), d(Sx2n, Tx2n+1),
1
2
{d(Tx2n−1, Tx2n+1) + d(Sx2n, Sx2n)}}))

= F (ψ(max{d(Tx2n−1, Sx2n), d(Tx2n−1, Sx2n), d(Sx2n, Tx2n+1),
1
2
d(Tx2n−1, Tx2n+1)}), ϕ(max{d(Tx2n−1, Sx2n),

d(Tx2n−1, Sx2n), d(Sx2n, Tx2n+1),
1
2
d(Tx2n−1, Tx2n+1)}))

= F (ψ(max{d(y2n, y2n−1), d(y2n, y2n+1),
1
2
d(y2n−1, y2n+1)}),

ϕ(max{d(y2n, y2n−1), d(y2n, y2n+1),
1
2
d(y2n−1, y2n+1)}))

≤ F (ψ(max{d(y2n, y2n−1), d(y2n, y2n+1)}),

ϕ(max{d(y2n, y2n−1), d(y2n, y2n+1)}))

Since ψ and ϕ are altering distance and ultra altering distance functions respectively,

F ∈ C and Φ is an contractive modulus, λ(x2n, x2n+1) = (y2n, y2n+1) is not possible.

Thus,

ψ(d(y2n, y2n+1)) ≤ F (ψ(Φ(d(y2n−1, y2n))), ϕ(Φ(d(y2n−1, y2n)))). (2.7)

Since Φ is an upper semi continuous, contractive modulus. Equation (2.7) implies that

the sequence {d(y2n+1, y2n)} is monotonic decreasing and continuous. There exists a

real number, say r ≥ 0 such that

lim
n→∞

d(y2n+1, y2n) = r,

as n→∞ equation (??) ⇒

ψ(r) ≤ F (ψ(Φ(r)), ϕ(Φ(r)))

so, ψ(r) = 0 or ϕ(r) = 0 which is only possible if r = 0 and Φ is a contractive modulus.

Thus

lim
n→∞

d(y2n+1, y2n) = 0.

Claim: {y2n} is a Cauchy sequence.

Suppose {y2n} is not a Cauchy sequence.
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Then there exists an ε > 0 and sub sequence {ni} and {mi} such that mi < ni < mi+1

d(ymi , yni) ≥ ε and d(ymi , yni−1) ≤ ε (2.8)

ε ≤ d(ymi , yni) ≤ d(ymi , yni−1) + d(yni−1 , yni)

therefore lim
i→∞

d(ymi , yni) = ε

now

ε ≤ d(ymi−1 , yni−1) ≤ d(ymi−1 , ymi) + d(ymi , yni−1)

by taking limit i→∞ we get,

lim
i→∞

d(ymi−1 , yni−1) = ε

from (2.7) and (2.8)

ψ(ε) ≤ F (ψ(d(ymi , yni)), ϕ(d(ymi , yni)))

= F (ψ(Φ(d(Sxmi , Txni))), ϕ(Φ(d(Sxmi , Txni)))

≤ F (ψ(Φ(λ(xmi , xni))), ϕ(Φ(λ(xmi , xni)))

(2.9)

where implies

λ(xmi , xni) = max{d(Pxmi , Qxni), d(Pxmi , Sxmi), d(Qxni , Txni),
1
2

(d(Pxmi , Txni) + d(Qxni , Sxmi))}

= max{d(Txmi−1 , Sxni−1), d(Txmi−1 , Sxmi), d(Sxni−1 , Txni),
1
2

(d(Txmi−1 , Txni) + d(Sxni−1 , Sxmi))}

= max{d(ymi−1 , yni−1), d(ymi−1 , ymi), d(yni−1 , yni),
1
2

(d(ymi−1 , yni) + d(yni−1 , ymi))}

Taking limit as i→∞, we get

lim
i→∞

λ(xmi , xni) = max{ε, 0, 0, 1
2

(ε+ ε)}

lim
i→∞

λ(xmi , xni) = ε

Therefore from (2,9) we have, ψ(ε) ≤ F (ψ(Φ(ε)), ϕ(Φ(ε)))

This is a contraction because ε > 0, ψ and ϕ are altering distance and ultra altering
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distance functions respectively, F ∈ C and Φ is contractive modulus.

Therefore {y2n} is Cauchy sequence in X

There exits a point z in X such that lim
n→∞

y2n = z

Thus,

lim
n→∞

Sx2n = lim
n→∞

Qx2n+1 = z and

lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = z

(i.e) lim
n→∞

Sx2n = lim
n→∞

Qx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Px2n+2 = z

T (X) ⊆ P (X), there exists a point u ∈ X such that z = Pu

ψ(d(Su, z)) = ψ(d(Su, Tx2n+1) + d(Tx2n+1, z))

≤ ψ(d(Su, Tx2n+1)) + ψd(Tx2n+1, z))

≤ F (ψ(Φ(λ(u, x2n+1))), ϕ(Φ(λ(u, x2n+1))) + ψ(d(Tx2n+1, z)))

where

λ(u, x2n+1) = max{d(Pu,Qx2n+1), d(Pu, Su), d(Qx2n+1, Tx2n+1),
1
2

(d(Pu, Tx2n+1) + d(Qx2n+1, Su))}

= max{d(z, Sx2n), d(z, Su), d(Sx2n, Tx2n+1),
1
2

(d(z, Tx2n+1) + d(Sx2n, Su))}.

Now taking the limit as n→∞ we have,

λ(u, x2n+1) = max{d(z, Su), d(z, Su), d(Su, Tu),
1
2

(d(z, Tu) + d(z, Su))}

= max{d(z, Su), d(z, Su), d(Su, z),
1
2

(d(z, z) + d(z, Su))}

= d(z, Su)

Thus

ψ(d(Su, z)) ≤ F (ψ(Φ(d(Su, z))), ϕ(Φ(d(Su, z))) + ψ(d(z, z)))

= F (ψ(Φ(d(Su, z))), ϕ(Φ(d(Su, z))))

If Su 6= z then d(Su, z) > 0 and hence as Φ is contracive modulus

F (ψ(Φ(d(Su, z))), ϕ(Φ(d(Su, z))) < F (ψ(d(Su, z)), ϕ(d(Su, z))) Which is a contradic-

tion, Su = z so, Pu = Su = z
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So u is a coincidence point if P and S. The pair of maps S and P are weakly compatible

SPu = PSu that is Sz = Pz.

S(X) ⊆ Q(X), there exists a point v ∈ X such that z = Qv.

Then we have

ψ(d(z, Tv)) = ψ(d(Su, Tv))

≤ F (ψ(Φ(λ(u, v))), ϕ(Φ(λ(u, v)))

≤ F (ψ(λ(u, v)), ϕ(λ(u, v))

= F (ψ(max{d(Pu,Qv), d(Pu, Su), d(Qv, Tv),
1
2

(d(Pu, Tv) + d(Qv, Su))}), ϕ(max{d(Pu,Qv),

d(Pu, Su), d(Qv, Tv),
1
2

(d(Pu, Tv) + d(Qv, Su))})

= F (ψ(max{d(z, z), d(z, z), d(z, Tv),
1
2

(d(z, Tv) + d(z, z))}, ϕ(max{d(z, z), d(z, z), d(z, Tv),

1
2

(d(z, Tv) + d(z, z))}))

= F (ψ(d(z, Tv)), ϕ(d(z, Tv))

Thus ψ(d(z, Tv)) ≤ F (ψ(Φ(d(z, Tv))), ϕ(Φ(d(z, Tv)))).

If Tv 6= z then d(z, Tv) ≥ 0 and hence as Φ is contractive modulus

F (ψ(Φ(d(z, Tv))), ϕ(Φ(d(z, Tv))) < F (ψ(d(z, Tv))ϕ(d(z, Tv)))

which is a contradiction. Therefore Tv = Qv = z

So, v is a coincidence point of Q and T.

Since the pair of maps Q and T are weakly compatible, QTv = TQv

(i.e) Qz = Tz.

Now show that z is a fixed point of S.
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We have

ψ(d(Sz, z)) = ψ(d(Sz, Tv))

≤ F (ψ(Φ(λ(z, v))), ϕ(Φ(λ(z, v))))

≤ F (ψ(λ(z, v)), ϕ(λ(z, v)))

= F (ψ(max{d(Pz,Qv), d(Pz, Sz), d(Qv, Tv),
1
2

(d(Pz, Tv) + d(Qv, Sz))}),

ϕ(max{d(Pz,Qv), d(Pz, Sz), d(Qv, Tv),
1
2

(d(Pz, Tv) + d(Qv, Sz))}))

= F (ψ(max{d(Sz, z), d(Sz, Sz), d(z, z),
1
2

(d(Sz, z) + d(z, Sz))}),

ϕ(max{d(Sz, z), d(Sz, Sz), d(z, z),
1
2

(d(Sz, z) + d(z, Sz))}))

= F (ψ(d(Sz, z)), ϕ(d(Sz, z)))

Thus ψ(d(Sz, z)) ≤ F (ψ(Φ(d(Sz, z))), ϕ(Φ(d(Sz, z)))).

If Sz 6= z then d(Sz, z) > 0 and hence as Φ is contractive modulus

F (ψ(Φ(d(Sz, z))), ϕ(Φ(d(Sz, z))) < F (ψ(d(Sz, z)), ϕ(d(Sz, z)))

which is a contradiction. There exits Sz = z. Hence Sz = Pz = z

Show that z is a fixed point of T.

We have

ψ(d(z, Tz)) = ψ(d(Sz, Tz))

≤ F (ψ(Φ(λ(z, z))), ϕ(Φ(λ(z, z)))

≤ F (ψ(λ(z, z)), ϕ(λ(z, z))

= F (ψ(max{d(Pz,Qz), d(Pz, Sz), d(Qz, Tz),
1
2

(d(Pz, Tz) + d(Qz, Sz))}),

ϕ(max{d(Pz,Qz), d(Pz, Sz), d(Qz, Tz),
1
2

(d(Pz, Tz) + d(Qz, Sz))})

= F (ψ(max{d(z, Tz), d(z, z), d(Tz, Tz),
1
2

(d(z, Tz) + d(Tz, z))})

ϕ(max{d(z, Tz), d(z, z), d(Tz, Tz),
1
2

(d(z, Tz) + d(Tz, z))})

= F (ψ(d(z, Tz)), ϕ(d(z, Tz))

Thus ψ(d(z, Tz)) ≤ F (ψ(Φ(d(z, Tz))), ϕ(Φ(d(z, Tz)))).

If z 6= Tz then d(z, Tz) > 0 and hence as Φ is contractive modulus

F (ψ(Φ(d(z, Tz))), ϕ(Φ(d(z, Tz))) < F (ψ(d(z, Tz)), ϕ(d(z, Tz))).
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which is a contradiction. Hence z = Tz.

Therefore Tz = Qz = z.

Therefore Sz = Pz = Tz = Qz = z.

That is z is common fixed point of P,Q, S and T.

Uniqueness

Suppose, z and w is (z 6= w) are common fixed point of P,Q, S and T.

we have

ψ(d(z, w)) = ψ(d(Sz, Tw))

≤ F (ψ(Φ(λ(z, w))), ϕ(Φ(λ(z, w)))

≤ F (ψ(λ(z, w)), ϕ(λ(z, w))

= F (ψ(max{d(Pz,Qw), d(Pz, Sz), d(Qw, Tw),
1
2

(d(Pz, Tw) + d(Qw,Sz))})),

ϕ(max{d(Pz,Qw), d(Pz, Sz), d(Qw, Tw),
1
2

(d(Pz, Tw) + d(Qw,Sz))})

= F (ψ(max{d(z, w), d(z, z), d(w,w),
1
2

(d(z, w) + d(w, z))}),

ϕ(max{d(z, w), d(z, z), d(w,w),
1
2

(d(z, w) + d(w, z))})

= F (ψ(d(z, w)), ϕ(d(z, w))

Thus, ψ(d(z, w)) ≤ F (ψ(Φ(d(z, w))), ϕ(Φ(d(z, w))))

Since z 6= w, then d(z, wd(> 0 and hence as Φ is contractive modulus.

F (ψ(Φ(d(z, w))), ϕ(Φ(d(z, w)))) < F (ψ(d(z, w)), ϕ(d(z, w)))

therefore F (ψ(d(z, w)), ϕ(d(z, w)) < F (ψ(d(z, w)), ϕ(d(z, w))

which is a contradiction,

z = w

Thus z is the unique common fixed point of P,Q, S and T . 2

Corollary 2.5 : Let (X, d) be a complete cone metric space with regular cone P such

that d(x, y) ∈ intP . Suppose that the mappings P, S and T are three self maps of (X, d)

such that T (X) ⊆ P (X) and S(X) ⊆ P (X) satisfying

ψ(d(Sx, Ty)) ≤ F (ψ(Φ(λ(x, y))), ϕ(Φ(λ(x, y)))), (2.10)
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for all x, y ∈ X, where ψ and ϕ are altering distance and ultra altering distance functions

respectively, F ∈ C such that ψ(t+ s) ≤ ψ(t) + ψ(s) and Φ is contractive modulus.

λ(x, y) = max{d(Px, Py), d(Px, Sx), d(Py, Ty), 1
2{d(Px, Ty) + d(Py, Sx)}}. The pair

{S, P} and {T, P} are weakly compatible. Then P, S and T have a unique common

fixed point.

Proof : The proof of the corollary immediate by taking P = Q in the above Theorem

2.4.

References

[1] Abdeljawad T. Turkloglu D. and Abuloha M., Some theorems and examples of
cone metric spaces, J. Comput. Anal. Appl., 12(4) (2010), 739-753.

[2] Huang L. G., Zhang, Cone metric spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.

[3] Krishnakumar R. and Marudai M., Cone Convex Metric Space and Fixed Point
Theorems, Int. Journal of Math. Analysis, 6(22) (2012), 1087-1093.

[4] Krishnakumar R. and Dhamodharan D., Common fixed point of four mapping
with contractive modulus on cone banach space, Malaya J. Mat., 5(2) (2017),
310-320.

[5] Krishnakumar R. and Dhamodharan D., Fixed point theorems in normal cone
metric space, International J. of Math. Sci. & Engg. Appls., 10(III) (2016),
213-224.

[6] Lin S. D., A common fixed point theorem in abstract spaces, Indian J. Pure
Appl. Math., 18 (1987), 685-690.

[7] Mehdi Asadi and Hossein Soleimani, Examples in cone metric spaces: A Survey,
Middle -East Journal of Scientific Research,11(12) (2012), 1636-1640.

[8] Ansari A. H., Note on ϕ − ψ-contractive type mappings and related fixed
point, The 2nd Regional Conference on Mathematics And Applications, PNU,
(September 2014), 377-380.

[9] Arslan Hojat Ansari,Sumit Chandok, Nawab Hussin and Ljiljana Paunovic,
Fixed points of (ψ, φ)- weak contractions in regular cone metric spaces via new
function, J. Adv. Math. Stud., 9(1) (2016), 72-82.


