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Abstract

Let G be a simple graph of order n. We introduce the concept of greatest com-
mon divisor degree matrix M (G) of G and greatest common divisor degree energy
Ecop(G) of G. Also we compute the greatest common divisor energy of some classes
of graphs and regular graphs of order 10.

1. Introduction

In 1736, Euler first introduced the concept of graph theory. Energy of graphs was first
introduced by I.G.Gutman in 1978 [6]. Spectral theory has emerged as a potential area
of interdisciplinary research and Energy of graph is of recent interest. Chandrasekar
Key Words : Energy of graphs, Mazimum degree energy of graphs, Greatest common divisor
degree energy of a graph.

AMS Subject Classification : 05C50.

© http: //www.ascent-journals.com

163



164 R. S. RAMKUMAR & K. NAGARAJAN

Adiga and Smitha introduced the concept of maximum degree energy and discussed
about the maximum degree energy of some standard graphs [3]. These motivates us to
introduce an greatest common degree energy of graphs and discuss about the greatest

common divisor energy of some standard graphs.

2. Preliminaries

We present some known definitions and results related to energy of graphs and greatest
common divisor energy of graphs for ready reference to go through the work presented
in this paper.

Definition 2.1 [6] : Let G be a simple graph and let V(G) = {v1,ve,...,v,} be its
vertex set. The adjacency matrix A(G) of the graph G is a square matrix of order n
whose (i, ) entry is equal to unity if the vertices v; and v; are adjacent and is equal
to zero otherwise.

Definition 2.2 [6] : Let G be a simple graph and let A(G) be the adjacency matrix of
the graph G. The eigen values A1, Ag, ..., A, of A(G), assumed in non-increasing order,

are the eigen values of the graph G. Then the energy F(G) of G is defined as the sum

of the absolute values of its eigen values.i.e. E(G) = Z | Ai]-
i=1

Definition 2.3 [3] : Let G be a simple graph with n vertices vy, v, ..., v, and let d;
be the degree of v;, i = 1,2,...,n. Then the maximum degree matrix M(G) = [d;;] is
defined as

P maz{d;,d;} if v;,v; are adjacent
Y 0 otherwise .
Denote the eigen values of the maximum degree matrix M (G) by w1, p, ..., i, and

label them in non-increasing order. The maximum degree energy of G is defined as
n

En(G) = |pil-

i=1
Example 2.4 : Consider a following graph G. Here, d(v1) = d(v3) = 3 and d(vy) =
d(vg) = 2.
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In the above example, the maximum degree matrix of the graph G is

M(G) =

W w w o
O W o w
W o ww
O W o w

Then the maximum degree eigen values are p1 = 0, g = —1, ug = and pg =

3V17+3
2

—3V17+3
2

and also the maximum degree energy of the graph G is Ej/(G) = 13.3693.

3. Greatest Common Divisor Degree Energy

In this section, we define a greatest common divisor matrix and greatest common divisor
energy of a simple graph G. Also we find the greatest common divisor energy of complete
graph K, and the star graph S,,.

Definition 3.1 : Let G be a simple graph with n vertices vy, va, ..., v, and let d; be the

degree of v; for every i = 1,2, ...,n. Define

{g.c.d.{di,dj} if v;,v; are adjacent
ij = :

0 otherwise

Then the n x n matrix M(G) = [aj;] is called a greatest common divisor degree ma-
trix(g.c.d. degree matrix) of G. The g.c.d. degree characteristic polynomial of the g.c.d.
degree matrix M(G) is defined by ¢(G; \) = det(A\ — M(G)) = X" + )\ 4 . 4 ¢,
where I is the unit matrix of order n. The roots A1, Ao, ..., A, assumed in non-increasing
order of ¢(G; \) = 0 are the greatest common divisor degree eigen values(g.c.d. degree
eigen values) of G. The greatest common divisor degree energy (g.c.d. degree energy)

of a graph G is defined as Eqop(G) = > | il
i=1
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Example 3.2 : Consider a following graph G.Here, d(v1) = d(v3) = 3
and d(vg) = d(v4) = 2.

Uy Ug

In the above example, the g.c.d. degree matrix of the graph G is

0131

1 010 .
M(G) = s 10 11 Then the g.c.d. degree eigen values are A\; = 0,y = —3,

1 010

V33+3 —V33+3

Az = T+ and \y = % and the greatest common divisor degree energy of

the graph G is Egeop(G) = 8.7446.

Theorem 3.3 : If G is the complete graph K,,, then —(n — 1) and —(n — 1)? are g.c.d.
degree eigen values of G with multiplicity (n — 1) and 1 respectively and Egcp(Ky) =
2(n —1)%

Proof : We have

A —(n—-1) —(n—-1) —(n—1)
—(n—1) A —(n—-1) ... —(n—-1)
N[ — M(K,)|=|-(n—1) —(n—1) A e —(n=1)
—-(n—-1) —(n—-1) —(n—-1) .. A
A —(n—1) —(n—1) —(n—1)
“A—(Mmn—-=1) A+ (n-1) 0 0
=|-A—(n—-1) 0 A+ (n—1) 0
-A—(n—-1) 0 O A+ (n—1)
A —(n—=-1) —(n-1) —(n—1)
-1 1 0 0
=A+(n-1)" -1 0 1 0
10 [

= A+ (n—-1)"T A+ (n-1)>3).

Therefore —(n — 1) and —(n — 1)? are g.c.d. degree eigen values of G with multiplicity
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(n — 1) and 1 respectively.

Hence Egcop(K,) = 2(n —1)2. m
Theorem 3.4 : If G is a star graph .S,, of order n, then 0 is the g.c.d. degree eigen
values of G with multiplicity n—2 and also v/n — 1 and —y/n — 1 are g.c.d. degree eigen
values of G and each has multiplicity 1 and Egcp(Sy) = 2v/n — 1.

Proof : We have

A1 -1 . -1 -1

-1 A 0 0 0
A= 0 0 0
0 0 0 A0

-1 0 0 0 A

Ao—1 -1 -1 -1

-1 A 0 0 0

o —x A 0 0

0 0 0 A0

0 0 A A

=\"— (n—1)A"2

Therefore 0 is the g.c.d. degree eigen values of G with multiplicity n—2 and also v/n — 1
and —/n — 1 are g.c.d. degree eigen values of G and each has multiplicity 1.

Hence Egcop(Sp) = 2v/n — 1.

Remark 3.5 : Eqcop(Sn) < Egep(Ky).

4. G. C. D. Degree Energy of 3-Regular Graphs of Order 10

In this section, we define g.c.d. degree equivalence of two graphs G and H and g.c.d.
degree unique of a graph G. Also we compute the g.c.d. degree energy of 3-regular
graphs of order 10. Finally, we prove that Peterson graph P is not g.c.d. degree unique.
Definition 4.1 : Two graphs G and H are said to be g.c.d. degree equivalent if
Ecep(G) = Egep(H) and written as G ~ H.

Remark 4.2 : The relation ~ is an equivalence relation on the family G of graphs.
Notation 4.3 : The g.c.d. degree energy equivalence class determined by G is denoted
by [G]. That is for given graph G € G, [G] ={H € G: H ~ G}.

Definition 4.4 : A graph G is said to be g.c.d degree energy unique if [G] = {G}.
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Let us consider the g.c.d. degree characteristic polynomial of 3-regular graphs of order
10. Also, we shall compute g.c.d. degree energy of this class of graphs. There are exactly
21 cubic graphs of order 10 given in figure 4.1 [7] and these 21 graphs are denoted by
G1,Go,...,Go1 given in figure 4.1. We prove that Peterson graph Pis not g.c.d. degree
unique but can be determined by its g.c.d. degree energy and its g.c.d degree eigen

values.

Figure 4.1: Cubic graphs of order 10.
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We computed the g.c.d degree characteristic polynomials of 3-regular graphs of order
10 in table 4.1.

Table 4.1 : g.c.d. degree characteristic polynomial of cubic graphs of order

10.
Gi A(Gis N)
G, A0 13508 — 216A7 + 517128 + 155520°% — 736297% — 22744823 + 28868472 + 944784\
Go A0 —1350% — 108A7 + 575128 + 68047° — 88209\ — 10497675 + 4199047 + 472392\
G3 AT0 13528 — 16227 + 558970 + 116647° — 699842% — 16621273 4 196830A% + 517758\ + 177147
[ AP0 13528 —108A7 + 510370 + 8748)\% — 444692% — 12247227 — 7873222
Gs A0 _ 13508 —216A7 + 5751A% + 165247\% — 677972 — 28868473 — 2361962
Ge A0 —1350% — 108A7 + 575128 + 68047° — 882097 — 1049765 4 41990477 + 472392\
Gr A0 —135)% 4 558908 — 2916A° — 852030T + 7873227 + 387099A% — 236196 — 531441
Gg A0 13528 1+ 575105 — 3888A° — 9695727 + 13996827 + 49863677 — 944784
Go A0 _1350% — 5407 + 575120 4+ 194425 — 962888AT — 43742°% 4+ 59705112 — 157464\ — 708588
G1o A0 —13570% 4+ 526508 — 97205 — 6196507 — 4374073 + 2296352 + 393660\ + 177147
Gi1 A0 —1350% — 10707 + 558928 + 7776 0% — 7654507 — 13996875 + 1509037 + 393660\ + 177147
Gia A0 —1350% — 10707 + 607578 + 58520° — 114453707 — 7873275 + 94478477 + 314928\ — 2834352
G13 A0 _135X% — 5407 4 542728 4 291617 — 699842T — 48114X° 4 2296357 + 236196\ + 708544
Gia | MO —1350% — 16207 + 607578 + 116642° — 10497670 — 249318)\% + 49207572 + 133844\ + 708544
Gis A0 —1350% — 5407 + 558908 + 291607 — 8456401 — 5248875 + 35429472 + 511758\ + 177147
Gig A0 1352% 4 51030% — 61965AT + 2361962
Gi7 A0 _1357% 1+ 607578 — 5832)° — 12028577 + 2624401° 4 78732007 — 3149280\ + 2834352
Gig A0 _1350% — 21617 4 5103A° 4 1555205 — 2697327 — 12247223 — 7873272
Gio | A0 — 13538 — 1087 + 5913A° + 680425 — 102789 — 11372423 + 64953922 + 314928\ — 1240029
Gao A0 13508 — 32407 + 510308 + 2332805 — 947727 — 1837087\ — 2361962
Go1 A0 1350% — 216A7 + 413125 + 174967 + 1968377

By comparing the roots of g.c.d. degree characteristic polynomial of cubic graphs of
order 10, we can find out the g.c.d. degree energy of these graphs. We compute them

to four decimal place in table 4.2.

Table 4.2 : g.c.d. degree energy of cubic graphs of order 10.

Gi | Ecep(Gi) | Gi | Egep(Gi) || Gi | Ecep(Gy)
G1 45.3694 Gsg 45.3694 Gis 44.3840
Gy 44.5790 Gy 45.9480 Gig 42.0000
Gs 44.4360 G1o 43.4160 Gi7 48.0000
Gy 40.5440 G111 44.1050 Gig 40.6710
Gs 42.8780 G112 48.0000 Gg 46.7370
Gsg 44.8320 Gis 43.1430 Gag 42.0000
G~ 45.2320 G1a 46.5530 Go1 36.0000

Theorem 4.5 : Six cubic graphs of order 10 are not g.c.d. degree energy unique. The
g.c.d. degree energy eigen values of two cubic graphs of order 10 are different in exactly

3 values if they have equal g.c.d. degree energy.
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Proof : Using table 4.2, we have [G1] = {G1,Gs},[G13] = {G13,G16} and [Gr2] =
{G12,G17}.

From table 4.1, we have

(G1;0) = AA+3)°(A = 3)* (A +6)*(A - 9) (A B 3\/i+ 3) (A N 3\/§— 3>and

$(Gs;N) = AA +3)* (A =3)° (A +6)° (A~ 9) (H 3“@* 3) (H M)

2
Also,

d(G16;A) = A2(A = 3) (A + 32 (A +6)(A — 6)(A+ 9) (A — 9)and
$(Ga0;A) = XA+ 3)> (A = 3)(A = 6)°(A — 9)°,
Similarly,

H(Gr2;A) = A +3)2(A = 32N +6)3(A — 6)(A — 9)and
$(Gr7;A) = (A= 3)°(A+6)' (A - 9).

O
Theorem 4.6 : Let G be the family of 3-regular graphs of order 10. For the Peterson
graph P, we have the following properties:

(i) P is not g.c.d. degree energy unique in G.
(ii) P has the maximum g.c.d. degree energy in G.

(iii) P can be identify by its g.c.d. degree energy and its g.c.d. degree eigen values in
G.

Proof : (i)The g.c.d. degree matrix of P is

(0 3 0 0 3 3 0 0 0 0]
303 0003000
03 0300O03°600
0030300030
300 3 00O0O0O03
M(G) = 300 00O0O03 30
03 000O0O0O0S33
003 003¢00°O03
0003033¢0¢0°0
00003 03 3 0 0f
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Then the characteristic polynomial is

A — M(P)| = A1 — 135)3 + 607505 — 5832\ — 120285\* + 262440\
+ 7873202 — 3149280 + 2834352
=(A=3°\+6)*(\—9).

Then we have
AM=9X = A3=M=XA=X=3,A\7 =g = Ag = \jg = —6.

Therefore Eqop(P) = 48.

By table 4.1, we have P € {G12,G17}.

Hence P is not g.c.d. degree unique in G.

(ii) From the table 4.2, P has the maximum g.c.d. degree energy in G.

(iii) From the theorem 4.5, ¢(G12; ) = ¢(P; A).

Hence G17 is the Peterson graph. a
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