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Abstract

The most general linear operator transforming one sequence space into another se-
quence space is actually given by an infinite matrix. The purpose of the paper is
to establish some results in sequence spaces with matrix transformation as vedic
relation.

1. Introduction

The idea of the sequence spaces was motivated through the classical results of summa-

bility theory which were first introduced by Cesaro, Borel, Norlund, Riesz and others.

The first attempt to study summability, the most general linear operator transforming

one sequence space into another sequence space is actually given by an infinite matrix.

Therefore, the matrix transformations as methods in abstract sense were introduced by
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the celebrated mathematician Toeplitz in 1911, be used to characterize matrix trans-

formations and gave the necessary and sufficient conditions for an infinite matrix to be

regular. Regular in the sense that it preserves the limit of the convergent sequences [1].

We find some classical sequences in Mishra et.al. [5], Ray [6] and Baral [7].

Definition 1.1 : A sequence is a function with domain set as the set of natural numbers

and range set as the set of real numbers.

Definition 1.2 : A sequence space is a function space whose elements are functions

from the set of natural numbers to the field K of real or complex numbers.

Definition 1.3 : By ω, we denote the space of all complex valued sequences. Any

vector subspace of ω is called a sequence space. We write 1∞, c0 and c for the Banach

spaces of all bounded, null sequence and convergent respectively. The sequence spaces

are typically equipped with a norm, or at least the structure of topological vector spaces.

Definition 1.4 : A norm on a linear space X is a function which assigns a non-negative

real number ‖x‖ to each x in X with the following properties: for each x, y in X and

for k ∈ K,

(i) ‖x‖ = 0 iff x = 0, (ii) ‖kx‖ = |k|‖x‖ and (iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Definition 1.5 : Banach space is a normed linear space which is complete in the

matrix defined by its norms. This means that every Cauchy sequence is convergent

in the Banach space. Many of the best known function spaces are the Banach spaces.

Thus, a Banach Space (X, ‖ · ‖) is a complete normed space.

Definition 1.6 : A paranorm ‘g′ defined on a linear space X is a function g : X → R

having the following usual properties:

(i) g(θ) = 0, where θ is the 0 element in X,

(ii) g(x) = g(−x), for all x,

(iii) g(x+ y) ≤ g(x) + g(y) for all x, y,

(iv) The scalar multiplication is continuous, and (v) g(x) = 0⇒ x = θ.

Definition 1.7 : . A paranormed space is a linear space X together with a paranormal g

defined over the real field. A total paranorm is a paranorm such that g(x) = 0→ x = 0.

Every paranormed space (total paranormed space) is a semi metric linear space.
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Conversely, any semi-metric (metric) linear space can be made into a paranormed (total

paranormed) space. So, the total paranormed space and the semi-metric linear spaces

are essentially the same.

Example 1.8 : Rn is a normed linear space with the norm;

(i) ‖xn‖ =

[
n∑
i=1
|xi|n

]1/n
and (ii) ‖x∞‖ = max

0≤x≤1
|xi|.

Example 1.9 : The space c[a, b] is a normed linear space with the norm ‖f‖ =

sup
x∈(a,b)

|f(x)| where c[a, b] is a set of continuous functions on [a, b]. Also, 1∞, c0 and c are

the normal linear space with the norm ‖x‖ = sup
k
|xn| but not with norm ‖x‖ = lim

n→∞
|xn|.

Definition 1.8 : A seminorm is a finite non-negative function p on a vector space E

(over the field of real or complex number) satisfying the following: p(λx) = |λ|p(x) and

p(x+ y) ≤ p(x) + p(y), for all x, y ∈ E and scalar λ. Every semi-norm is a paranormed

(total paranormed) but not conversely. Every normed linear spaces may be regarded

as a metric space together with metric d(x, y), that is distance between x and y is

‖x− y‖ = d(x, y).

We consider the following spaces :

l∞(p) = {x = (xk) : sup
k
|xk|pk <∞}, c0(p) = {x = (xk) : |xk|pk → 0‘ (k →∞)}

and c(p) = {x = (xk) : |xk − l|pk → 0 for some l ∈ C}.
Then, the space c0(p) is metric linear space paranormed by ‖x‖ = g(x) = sup

k
|xk|

pk
M

and the spaces l∞(p)and c(p) are paranormed by g(x) = sup
k
|xk|

pk
M if inf pk > 0 [3].

We have the following properties related to paranormed spaces :

(i) Sl∞(p), Sc(p) and Sc0(p) are the paranormed spaces with the paranorm g(x) =

sup
pk

|∆xk|
pk
M where M = max(1, sup pk), iff (0 < inf pk < sup pk <∞) and

(ii) p = {pk} is a bounded sequence, then Sc0(p) is a paranormed spaces with the

paranorm g(x) = sup
pk

|∆xk|
pk
M [4].

Now, we introduce new sequence space {X(p, λ)}t = {x = (xk) : (tkxk) ∈ X(p, λ)}

where X(p, λ) = {x = (xk) : λx ∈ X} where λ =

 1 0 · · ·
2 1 · · ·
· · · · · · · · ·

 and X = {1∞, c0

and c}.



210 S. RAY, D. PANTHI, K. JHA & S. K. MISHRA

Those spaces are paranormed by g∗(x) = g(tx) where g is paranorm in X(p, λ).

If X is a sequence space, then we define dual space of sequence space X as

Xβ = {a = (ak) :
∞∑
k=1

akxk is convergent for each x ∈ X}.

If X and Y are two sequence spaces and A = (ank), (n, k = 1, 2, · · · ,∞) be an infinite

matrix of complex numbers, then we writeAx = (An(x)) if and only ifAn(x) =
∞∑
k=1

ankxk

converges to each n ∈ N . If x = (xk) ∈ X ⇒ Ax ∈ Y , then A defines a matrix trans-

formations from X into Y . By A ∈ (X,Y ), we mean the class of matrices A such that

A : X → Y , where (Ax)n = l∞(p, λ)t,
∞∑
k=1

ankxk, n ∈ N.

2. Main Results

Theorem 2.1 : Let pk > 0 for every k ∈ N, then lβ∞(p, λ)t = M∞(p, λ)t, where

M∞(p, λ)t =
∞⋂
N=2

{a = (ak) :
∞∑
k=1

|∆2ak|N
1
pk <∞}and ∆2ak = ∆ak −∆ak+1.

Proof : Let a ∈M∞(p, λ)t and x ∈ l∞(p, λ)t and we choose an integerN > max(1, sup
k
|uk|pk),

then we have

∣∣∣∣ m∑
k=1

akxk

∣∣∣∣ =

∣∣∣∣ m∑
k=1

(∆ak −∆ak+1)vk

∣∣∣∣, where

vk =
k∑
i=1

(k − i+ 1)tixi

=

∣∣∣∣∣
m∑
k=1

∆2akvk

∣∣∣∣∣
≤

∞∑
k=1

|∆2ak||vk|

≤
∞∑
k=1

|∆2ak|N
1
pk <∞,

thus, we have

M∞(p, λ)t ⊆ lβ∞(p, λ)t.

Theorem 2.2 : Let pk > 0 for every k ∈ N, then (A ∈ l∞(p, λ), l∞) if and only if

sup
n

∞∑
k=1

|∆2ank|N
1
pk <∞ for every integer N > 1.

Proof : Let the condition holds, then we have sup
n

∞∑
k=1

|∆2ank|N
1
pk < ∞. We take

tx ∈ l∞(p, λ) then λ tx ∈ l∞(p)t, and hence we get sup
k
|λ tx|pk <∞. So there exists an
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integer N ≥ 1 such that |λtx| ≤ N
1
pk then we have

∣∣∣∣ ∞∑
k=1

ankxk

∣∣∣∣ =

∣∣∣∣ ∞∑
k=1

∆2ankvk

∣∣∣∣ where

vk =
k∑
i=1

(k − i + 1)xi ≤
∞∑
k=1

|∆2ak||vk| ≤ sup
n

∞∑
k=1

|∆2ank|N
1
pk < ∞. Hence, it follows

that
∞∑
k=1

ankxk converges for each n ∈ N and Ax ∈ l∞.

On the other hand, let A ∈ (l∞(p, λ), l∞). As a contrary, let us assume that there exists

an integer such that sup
n

∞∑
k=1

|∆2ank|N
1
pk <∞. Then, the matrix (∆2ank) 6∈ (l∞(p, λ)l∞)

and so there exists ay = (yk) ∈ l∞ with sup
k
|yk| = 1 such that

∑
k

∆2ankyk 6= 0(1).

Although, if we define the sequence µ = {µk} by

µk = yk−2 − 2yk−1 + yk with yj = 0 for j ≤ 0,

= tk−2yk−2 − 2tk−1yk−1 + tkyk, putting k = 1, 2, · · ·

= t1y1 + t2(y2 − 2y1) + · · ·

then µ = l∞(p, λ)t and therefore we get
∞∑
k=1

ankµk =
∞∑
k=1

|∆2ankyk. It follows that

the sequence {An(µ)} 6∈ l∞ which is contradiction to our assumption. Hence, we have

sup
n

∞∑
k=1

|∆2ank|N
1
pk <∞.

This completes the proof of the theorem.

4. Vedic Relations

Vedic Mathematics is an ancient system of mathematics which provides multidimen-

sional thinking ability to human brain. It is based on 16 basic sutras and 13 up- sutras

[8]:

The First Sutra in sanskrit :Ekadhikena Purvena.

The First Sutra in English : Ekadhikena Purvena.

“By one more than the previous one” like 1, 1+1, 2+1,3+1, 4+1, 5+1, 6+1, 7+1, 8+1

that is, 1, 2, 3, 4, 5, 6, 7, 8, 9 (Sequence).

The vedic matrix is a nine by nine square array of numbers formed by taking a multi-

plication table and replacing each number by digit sum :

42 becomes 6, 56 becomes 11 which becomes 2 and so on.

So the first row consists of 1, 2, 3, 4, 5, 6, 7, 8, 9 and

the second row 2, 4, 6, 8, 1, 3, 5, 7, 9 and so on sequences.
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If we add the first and the last numbers in each row or column, we get the following

sequence 10, 11, 12, 13, 14, 15, 16, 17, 18 [6].

For example, in the second row we see that 8+1 = 9; 2+7 = 9; 6+3 = 9 ; 4+5 = 9.

These pairs of numbers can be written as ordered pairs: (1, 8), (2, 7), (3, 6) and (4, 5)

which form the matrix have some relations [8] :

(1, 8) : 1+ 8 = 9 ; 18 = 9 × 2 or 81 = 9 × 9,

(2, 7) : 2+ 7 = 9 ; 27 = 9 × 3 or 72 = 9 × 8,

(3, 6) : 3+ 6 = 9 ; 36 = 9 × 4 or 63 = 9 × 7 and

(4, 5) : 4+ 5 = 9 ; 45 = 9 × 5 or 54 = 9 × 6.
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