International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 11 No. II (August, 2017), pp. 9-18

TOTAL ACCURATE EDGE DOMINATION NUMBER IN GRAPHS

VENKANAGOUDA M. GOUDAR¹, VENKATESH S. H.², VENKATESHA³ AND TEJASWINI K. M.⁴

¹ Department of Mathematics, Gouthama Research Centre,

(Affiliated to Kuvempu University),

Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

² Research Scholar, Gouthama Research Centre, (Affiliated to Kuvempu University),

Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

³ Department of Mathematics,

Kuvempu University, Shankarghatta, Shimoga, Karnataka, India

⁴ Department of Mathematics,

Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

Abstract

An accurate edge dominating set D of a graph G = (V, E) is an total accurate edge dominating set, if $\langle D \rangle$ has no isolated edges. The total accurate edge domination number $\gamma_{tae}(G)$ is the minimum cardinality of an total accurate edge dominating set. In this paper, the exact value on $\gamma_{tae}(G)$ were obtained in terms of edges, maximum degree and diameter of G. We also investigate the total accurate edge domination number for cartesian product, corona, join and strong product graphs.

Key Words : Edge dominating set, Accurate edge dominating set, Total Accurate edge Dominating set.

AMS Subject Classification : 05C,05C05, 05C70.

1. Introduction

The graph G be a finite, simple, non-trivial, undirected and connected (p,q) graph with vertex set V(G) and edge set E(G). As usual P_p, C_p, W_p and K_p are respectively the path, cycle, wheel and complete graph.

In general, the maximum degree of a vertex v is denoted by $\Delta(G)$. The greatest distance between any two vertices of a connected graph G is called the diameter of G and is denoted by diam(G). For any real number x, $\lceil x \rceil$ denotes the smallest integer not less than x and $\lfloor x \rfloor$ denotes the greatest integer not greater than x. In general $\langle X \rangle$ to denote the subgraph induced by the set of vertices X.

A set $F \subseteq E(G)$ is said to be an edge dominating set if every edge in $\langle E(G) - F \rangle$ is adjacent to some edges in F. The Edge domination number of G is the cardinality of smallest edge dominating set of G and is denoted by $\gamma'(G)$. This concept was introduced by Mitchell and Hedetniemi [8].

A edge dominating set F of a graph G = (V, E) is an accurate edge dominating set, if $\langle E - F \rangle$ has no edge dominating set of cardinality |F|. The accurate edge domination number $\gamma_{ae}(G)$ is the minimum cardinality of an accurate edge dominating set [12].

Let G_1 and G_2 be the graphs of order p_1 and p_2 respectively. The corona of two graphs G_1 and G_2 is the graph $G_1 \circ G_2$ obtained by taking one copy of G_1 and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex of the i^{th} copy of G_2 .

The join of two graphs G_1 and G_2 is the graph $G_1 + G_2$ with the vertex set $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and the edge set $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup E_{G_1}^{G_2}$, where $E_{G_1}^{G_2} = \{uv/u \in V(G_1), v \in V(G_2)\}.$

Strong product of two graphs G_1 and G_2 is a graph $G = G_1 \boxtimes G_2$ is defined as the graph on the vertex set $V(G_1) \times V(G_2)$ with vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ connected by an edge if and only if either $u_1 = v_1$ and $u_2v_2 \in E(G_2)$ or $u_2 = v_2$ and $u_1v_1 \in E(G_1)$ or $u_1v_1 \in E(G_1)$ and $u_2v_2 \in E(G_2)$.

The cartesian product of the graphs G and H, written as $G \times H$, is the graph with vertex set $V(G) \times V(H)$, two vertices (u_1, u_2) and (v_1, v_2) being adjacent in $G \times H$ if and only if either $u_1 = v_1$ and $u_2v_2 \in E(H)$, or $u_2 = v_2$ and $u_1v_1 \in E(G)$. In this paper we follow the notations of [4].

2. Preliminary Notes

We need the following results to prove further results.

Theorem 2.1 [14] : For any cycle C_p ,

$$\gamma_t'(C_p) = \begin{cases} \frac{p}{2} & \text{where } p = 4n, \ n \ge 1\\ \lceil \frac{p}{2} \rceil & \text{where } p = 4n+1 \text{ and } p = 4n+3, \ n \ge 1\\ \frac{p}{2}+1 & \text{where } p = 4n+2, \ n \ge 1 \end{cases}$$

In the next section, we discuss Total accurate edge domination number of a graph.

3. Total Accurate Edge Domination Number of a Graph

We define new parameter total accurate edge domination number of a graph.

An accurate edge dominating set D of a graph G = (V, E) is an total accurate edge dominating set, if $\langle D \rangle$ has no isolated edges. The total accurate edge domination number $\gamma_{tae}(G)$ is the minimum cardinality of an total accurate edge dominating set. From the figure 3.1, the total accurate edge dominating set is $A = \{4, 5, 11, 13, 15, 17\}$. Therefore $\gamma_{tae}(G) = |A| = 6$.

4. Main Results

Theorem 4.1: For any complete graph K_p with $p \ge 5$, $\gamma_{tae}(K_p) = \Delta(G) - diam(G)$. **Proof**: Let $G = K_p$ be the complete graph with p vertices and q edges. Let $V(G) = \{v_1, v_2, ... v_p\}$ be the vertex set of G. Let $v \in V(G)$ be the vertex of maximum degree and $\Delta(v) = p - 1$. Choose any two vertices $v_i, v_j \in V(G)$ for $1 \le i \le p, 1 \le j \le p$ then $d(v_i, v_j) = 1$ that is diam(G) = 1. Let $D = \{e_1, e_2, ... e_l/1 \le l \le q\}$ be the minimum accurate edge dominating set of G. It is state forward that the induced subgraph < D > has no isolated edges. Clearly, D itself form the minimum total accurate edge dominating set of G. Thus,

$$\begin{split} |D| &= |V(G)| - 2, \ |D| &= p - 2, \ |D| &= (p - 1) - 1, \ \gamma_{tae}(K_p) &= \Delta(G) - diam(G) \end{split}$$

Hence the proof.

Theorem 4.2: For any cycle C_p , $\gamma_{tae}(C_p) = \lfloor \frac{q}{2} \rfloor + 1$.

Proof: Let $E = \{e_1, e_2, ..., e_q\}$ be the edge set of C_p . Let $D = \{e_1, e_2, ..., e_{\lfloor \frac{q}{2} \rfloor + 1}\}$ be the minimum accurate edge dominating set of C_p . It is obvious that the induced subgraph $\langle D \rangle$ has no isolated edges. So that D itself forms the minimum total accurate edge dominating set of C_p . By Theorem 2.1,

$$\begin{split} |D| &\leq |E(C_p)|, \\ |D| &\leq q, \\ |D| &= \lfloor \frac{q}{2} \rfloor + 1, \\ \gamma_{tae}(C_p) &= \lfloor \frac{q}{2} \rfloor + 1. \end{split}$$

Hence the proof.

Theorem 4.3: For any wheel W_p , $\gamma_{tae}(W_p) = \lceil \frac{p+1}{2} \rceil$.

Theorem 4.4: Let P_{p_1} and P_{p_2} be the two paths of order p_1 and p_2 respectively with $p_1 < p_2$ and $H = P_{p_1} + P_{p_2}$ be the join of P_{p_1} , P_{p_2} . Then $\gamma_{tae}(H) = \lceil \frac{p_2}{2} \rceil + (p_1 - 1)$. **Proof**: Let $G_1 = P_{p_1}$ and $G_2 = P_{p_2}$ be two paths labeled in order as $v_1 e_1 v_2 e_2 \dots e_{p_1 - 1} v_{p_1}$ and $v'_1 e'_1 v'_2 e'_2 \dots e'_{p_2 - 1} v'_{p_2}$ respectively with $p_1 < p_2$. Let $D = \{e''_1, e''_2, \dots e''_l / 1 \le l \le q\}$ be the accurate edge dominating set of H. Suppose $D \subseteq E(G_1) \cup E(G_2)$ then the induced subgraph < D > has isolated edges, which is a contradiction. So that $D \subseteq E(G_1) \cup E(G_2) \cup E^{G_2}_{G_1}$ forms the minimum total accurate edge dominating set of H. Thus,

$$|D| \leq |V(G_2)| + |V(G_1)|,$$

$$|D| = \lceil \frac{p_2}{2} \rceil + (p_1 - 1),$$

$$\gamma_{tae}(H) = \lceil \frac{p_2}{2} \rceil + (p_1 - 1).$$

Hence the proof.

Theorem 4.5: Let P_{p_1} be any path of length grater than one and C_3 be a cycle, $\gamma_{tae}(P_{p_1}+C_3) = \gamma'(P_{p_1}+C_3) + 1.$

Proof: Let $H = P_{p_1} + C_3$ be the join graph. Consider the minimum edge dominating set $D = \{e_1, e_2, \dots e_{\lceil \frac{p_1}{2} \rceil + 1}\}$ and $|D| = \gamma'(P_{p_1} + C_3) + 1$. But the set D is not accurate edge dominating set of H except $P_3 + C_3$. Consider an edge $x \in E(G) - D$ such that $A = D \cup \{x\}$ forms the minimum accurate edge dominating set of H and the induced subgraph $\langle A \rangle$ has no isolated edges. So that D is total accurate edge dominating set of G with minimum cardinality. Suppose $G = P_3 + C_3$, the set D itself forms minimum accurate edge dominating set of H. But D is not total accurate edge dominating set of H. For any edge $y \in E(H) - D$ and $A = D \cup \{y\}$ forms the total accurate edge dominating set of G with minimum cardinality. Thus,

$$\begin{aligned} |A| &\leq |V(P_{p_1})|, \\ |A| &= (\lceil \frac{p_1}{2} \rceil + 1) + 1, \\ |A| &= |D| + 1, \\ \gamma_{tae}(P_{p_1} + C_3) &= \gamma'(P_{p_1} + C_3) + 1 \end{aligned}$$

Hence the Proof.

Theorem 4.6: Let *H* be the cartesian product of P_{p_1} and C_3 . If $n \ge 1$ is an positive integer and $p_1 \ge 3$ then,

$$\gamma_{tae}(P_{p_1} \times C_3) = \begin{cases} \frac{3p_1+1}{2} & \text{if } p_1 = 2n+1\\ \frac{3p_1}{2} & \text{if } p_1 = 2n+2 \end{cases}$$

Proof: Let $G_1 = P_{p_1}$ be any graph of order $p_1 \ge 3$ and $G_2 = C_3$ be a cycle. The cartesian product $H = G_1 \times G_2$ is the graph with p vertices and q edges. Let $D = \{e_1, e_2, \dots e_{p_1+1}\}$ be the accurate edge dominating set of H with minimum cardinality. But the induced subgraph $\langle D \rangle$ has isolated edges, which is not total accurate edge dominating set of H. Consider $F \subseteq E(H) - D$ and $A = D \cup F$ forms the minimum total accurate edge dominating set of H.

We have the following cases

Case 1 : Suppose $p_1 = 2n + 1$.

Let $\{v_1, v_2, \dots, v_{2n+1}\}$ be the vertices of P_{p_1} and $\{u_1, u_2, u_3\}$ be the vertices of C_3 . Let

 $V(H) = \{v'_1, v'_2, ..., v'_{3(2n+1)}\}$ be the vertex set of H and $D = \{e_1, e_2, ..., e_{2n+2}\}$ be the minimum γ_{ae} -set of H. But the induced subgraph $\langle D \rangle$ has isolated edges, which is a contradiction. So we consider $\{e_i/1 \leq i \leq q\} \subseteq E(H) - D$ such that $A = D \cup \{e_i/1 \leq i \leq q\}$ for forms the minimum total accurate edge dominating set of H. Therefore,

$$\begin{split} |A| &= |D| + n, \\ |A| &= (2n+2) + n = 3n + 2 \\ |A| &= \frac{3p_1 + 1}{2}, \\ \gamma_{tae}(P_{p_1} \times C_3) &= \frac{3p_1 + 1}{2}. \end{split}$$

Case 2 : Suppose $p_1 = 2n + 2$.

Let $\{v_1, v_2, ..., v_{2n+2}\}$ be the vertices of P_{p_1} and $\{u_1, u_2, u_3\}$ be the vertices of C_3 . Let $V(H) = \{v'_1, v'_2, ..., v'_{3(2n+2)}\}$ be the vertex set of H and $D = \{e_1, e_2, ..., e_{2n+3}\}$ be the minimum γ_{ae} -set of H. But the induced subgraph $\langle D \rangle$ has isolated edges, which is a contradiction. So we consider $\{e_i/1 \leq i \leq q\} \subseteq E(H) - D$ such that $A = D \cup \{e_i/1 \leq i \leq q\}$ forms the minimum total accurate edge dominating set of H. Therefore,

$$\begin{aligned} |A| &= |D| + n, \\ |A| &= (2n+3) + n = 3n + 3, \\ |A| &= \frac{3p_1}{2}, \\ \gamma_{tae}(P_{p_1} \times C_3) &= \frac{3p_1}{2}. \end{aligned}$$

Hence the proof.

Theorem 4.7: Let P_3 be a path and P_{p_1} be any path with $p_1 \ge 4$, $\gamma_{tae}(P_3 \times P_{p_1}) \le \lceil \frac{q}{6} \rceil + diam(P_{p_1})$.

Proof: Let $G_1 = P_3$ and $G_2 = P_{p_1}$ be two path labeled in order as $v_1e_1v_2e_2v_3$ and $u_1e'_1u_2e'_2...e'_{p_1-1}u_{p_1}$ respectively. The cartesian product $H = G_1 \times G_2$ is the graph with p vertices and q edges. The diameter, $diam(P_{p_1}) = p_1 - 1 = \lceil \frac{q}{6} \rceil$. Let $D = \{e''_1, e''_2, ...e''_{p_1}\}$ be the accurate edge dominating set of H with minimum cardinality. But the induced subgraph $\langle D \rangle$ has isolated edges, which is a contradiction. Consider $F \subseteq E(H) - D$ and $A = D \cup F$ forms the minimum total accurate edge dominating set of H.

Thus,

$$\begin{split} |A| &\leq |E(H)| + |D| - 1, \\ |A| &\leq \lceil \frac{q}{6} \rceil + p_1 - 1, \\ \gamma_{tae}(P_3 \times P_{p_1}) &\leq \lceil \frac{q}{6} \rceil + diam(P_{p_1}). \end{split}$$

Hence the proof.

Theorem 4.8: Let *H* be the strong product of $P_3 \boxtimes P_{p_1}$. If $n \ge 1$ is an positive integer and $p_1 \ge 4$ then,

$$\gamma_{tae}(P_3 \boxtimes P_{p_1}) = \begin{cases} \frac{5p_1}{2} - 4 & \text{if } p_1 = 2n + 2\\ \frac{5p_1 - 7}{2} & \text{if } p_1 = 2n + 3 \end{cases}$$

Proof: Let P_3 be a path and P_{p_1} be any path of order $p_1 \ge 4$ and $H = P_3 \boxtimes P_{p_1}$ be the strong product graph of P_3 and P_{p_1} .

We have the following cases

Case 1 : Suppose $p_1 = 2n + 2$.

Let $D = \{e_1, e_2, \dots e_{\frac{3p_1}{2}-2}\}$ be the minimum γ_{ae} -set of H. But the induced subgraph < D > has isolated edges. Consider $F = \{e_1, e_2, \dots e_{p_1-2}\} \subseteq E(H) - D$ such that $A = D \cup F$ forms the minimum total accurate edge dominating set of H. Therefore,

$$\begin{aligned} |A| &= |D| + |F|, \\ |A| &= (\frac{3p_1}{2} - 2) + (p_1 - 2), \\ \gamma_{tae}(P_3 \boxtimes P_{p_1}) &= \frac{5p_1}{2} - 4. \end{aligned}$$

Case 2 : Suppose $p_1 = 2n + 3$.

Let $D = \{e_1, e_2, \dots e_{\lceil \frac{3p_1}{2} \rceil - 1}\}$ be the minimum γ_{ae} -set of H. But the induced subgraph $\langle D \rangle$ has isolated edges. Consider $F = \{e_1, e_2, \dots e_{p_1-3}\} \subseteq E(H) - D$ such that $A = D \cup F$ forms the minimum total accurate edge dominating set of H. Therefore,

$$|A| = |D| + |F|,$$

 $\gamma_{tae}(P_3 \boxtimes P_{p_1}) = \frac{5p_1 - 7}{2}.$

Hence the proof.

Theorem 4.9: Let P_{p_1} be any path with $p_1 \ge 2$, $\gamma_{tae}(P_{p_1} \boxtimes P_{p_1}) \ge \gamma'(P_{p_1} \boxtimes P_{p_1}) + \lfloor \frac{p_1}{2} \rfloor$.

Proof: Let $H = P_{p_1} \boxtimes P_{p_1}$ be the strong product with p vertices and q edges. Let $D = \{e_1, e_2, ..., e_l/1 \leq l \leq q\}$ be the minimum edge dominating set of H and $|D| = \gamma'(P_{p_1} \boxtimes P_{p_1})$. Choose an edge $x \in E(H) - D$ and let $D_1 = D \cup \{x\}$ be the minimum γ_{ae} -set of H. But the induced subgraph $< D_1 >$ does not form a total accurate edge dominating set of H except P_2 and P_3 . For $p_1 = 2$ and 3, the set $A = D_1$ forms the minimum total accurate edge dominating set of H. Consider $F \subseteq E(H) - D_1$ and $A = D_1 \cup F$ forms the total accurate edge dominating set of H with minimum cardinality. Thus,

$$|A| \geq |D| + |V(P_{p_1})|,$$

$$\gamma_{tae}(P_{p_1} \boxtimes P_{p_1}) \geq \gamma'(P_{p_1} \boxtimes P_{p_1}) + \lfloor \frac{p_1}{2} \rfloor$$

Hence the Proof.

Theorem 4.10: Let any path P_{p_1} , $p_1 \ge 1$ and a cycle C_3 . Then $\gamma_{tae}(C_3 \circ P_{p_1}) \ge \gamma_{ae}(C_3 \circ P_{p_1})$ for P_2 , P_3 , P_4 and equality holds for remaining paths.

Proof: Let $G_1 = C_3$ and $G_2 = P_{p_1}$ be any two graphs of order three and $p_1 \ge 1$. Let $H = C_3 \circ P_{p_1}$ be the corona graph with p vertices and q edges. Let $D = \{e_l/1 \le l \le q\}$ be the minimum edge dominating set of H. In particular, $|D| = p_1$ for the graph $C_3 \circ P_{3p_1}$ and $C_3 \circ P_{3p_1-1}$. Also $|D| = p_1 + 1$ for the graphs $C_3 \circ P_{3p_1-2}$. The set D is the minimum accurate edge dominating set for only P_3 and P_4 .

Case 1 : Suppose $G_2 = P_{p_1}$ except $p_1 = 2, 3 and 4$.

Consider $F \subseteq E(H) - D$ and $D_1 = D \cup F$ forms the minimum accurate edge dominating set of H and the set $A = D_1$ itself forms the total accurate edge dominating set of Gwith minimum cardinality. Clearly, $|A| = |D_1|$. Therefore, $\gamma_{tae}(C_3 \circ P_{p_1}) = \gamma_{ae}(C_3 \circ P_{p_1})$. **Case 2** : Suppose $G_2 = P_2$ and P_4 .

Consider $x \in E(H) - D_1$ and $A = D_1 \cup \{x\}$ forms the minimum total accurate edge dominating set of H. Clearly, $|A| \ge |D_1|$. Therefore $\gamma_{tae}(C_3 \circ P_{p_1}) \ge \gamma_{ae}(C_3 \circ P_{p_1})$. **Case 3** : Suppose $G_2 = P_3$.

For any two edges $x, y \in E(H) - D_1$ and $A = D_1 \cup \{x, y\}$ forms the minimum total accurate edge dominating set of H. Clearly, $|A| \ge |D_1|$. Therefore $\gamma_{tae}(C_3 \circ P_{p_1}) \ge \gamma_{ae}(C_3 \circ P_{p_1})$.

Hence the proof.

Theorem 4.11 : Let P_2 and P_{p_1} be two paths with $p_1 \ge 3$, $\gamma_{tae}(P_2 \circ P_{p_1}) \le \lfloor \frac{\Delta(P_2 \circ P_{p_1})}{2} \rfloor +$

 $(p_1 - 1).$

Proof: Let $H = P_2 \circ P_{p_1}$ be the corona graph such that |V(H)| = p, |E(H)| = q and $\Delta(H) = p_1$. Let $D = \{e_1, e_2, \dots e_t/1 \le t \le q\}$ be the accurate edge dominating set of H with minimum cardinality and the induced subgraph < D > has no isolated edges. Clearly, A = D is the minimum total accurate edge dominating set of H. Otherwise, consider $F \subseteq E(H) - D$ and $A = D \cup F$ forms the minimum total accurate edge dominating set of H. Thus,

$$|A| \leq |\frac{V(P_{p_1})}{2}| + |V(P_{p_1}) - 1|,$$

$$|A| \leq \lfloor \frac{p_1}{2} \rfloor + (p_1 - 1),$$

$$\gamma_{tae}(P_2 \circ P_{p_1}) \leq \lfloor \frac{\Delta(P_2 \circ P_{p_1})}{2} \rfloor + (p_1 - 1)$$

Hence the Proof.

5. Conclusion

In this paper we discussed the total accurate edge number of graphs and some operation on graphs.

References

- Arumugam S. and Velammal, Edge domination in graphs, Taiwanese Journal of mathematics, 2(2) (1998), 173-179.
- [2] Cockayne C. J., Dawes R. M. and Hedetniemi S. T., Total domination in graphs, networks, 10 (1980), 211-219.
- [3] Sampathkumar E. and Walikar H. B., The connected domination number of a graph, J. Math. Phys. Sci., 13 (1979), 607-613.
- [4] Harary F., Graph Theory, Adison Wesley, reading mass, (1969).
- [5] Walikar H. B., Acharya B. D. and Sampathkumar E., Recent developments in the theory of domination in graphs. In MRI Lecture Notes in Math. Mehta research Instit., Allahbad, 1 (1979).
- [6] Jeyanthi P. and Hemalatha G., Total restrained domination subdivision number for cartesian product graphs, International journal of mathematics and soft computing, 3 (2013), 49-58.
- [7] Ore O., Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence (1962).

- [8] Mitchell S. L. and Hedetniemi S. T., Edge domination tree, Congr., 19 (1977), 489-509.
- [9] Jayaram S. R., Line domination in graphs, Graph Combin., 3 (1987), 357-363.
- [10] Haynes T. W., Hedetniemi S. T. and Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, Newyork, (1997).
- [11] Haynes T. W., Hedetniemi S. T. and Slater P. J., Domination in Graphs : Advanced Topics, Marcel Dekker, Newyork, (1998).
- [12] Venkatesh S. H, Kulli V. R., Venkanagouda M. Goudar and Venkatesha, Results on Accurate Edge Domination Number in Graphs, Journal of ultra scientist of physical sciences., 29 (2017), 21-29.
- [13] Kulli V. R. and Kattimani M. B., Accurate Domination Number in Graph, Vishwa International publications, (2012).
- [14] Kulli V. R. and Patwari D. K., On the total edge dominating number of graph, In A. M. Mathai, Editor, Proc. of the Symp. on Graph Theory and Combinatorics, Kochi, Centre Math. Sci., Trivandrum, 21 (1991), 75-81.