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Abstract

In this note we present a new simple and smooth transcendental approximation to
f(x) = |x|, with sufficient accuracy. The proposed formula gives better approxima-

tion than
√
x2 + µ2 in terms of accuracy.

1. Introduction

In many practical situations, the optimization techniques use the derivative of the objec-

tive function and we need to optimize an expression of the type Σ|xi|. But, f(x) = |x|
is not derivable at zero. So the general question is, are there any good approxima-

tions of the absolute value function which are smooth? One simple approximation is√
x2 + µ2 [4]. In [2],

√
x2 + µ was efficiently used as smooth approximation to |x| and

Carlos Ramirez et al. [3] proved it to be the most computationally efficient smooth

approximation to |x|. S. Voronin et al. [4] proved that -

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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||x| −
√
x2 + µ2| ≤ µ where µ > 0 ∈ R. (1.1)

There are also some transcendental approximations to |x| which are smooth. log(e2x +

1)−x [5] is asymptotically better approximation. Though
√
x2 + µ2 is computationally

efficient, but as far as accuracy is concerned better smooth transcendental approxima-

tions can be given to |x|. One such approximation is x · erf
(
x
µ

)
[6]. We propose a new

smooth approximation to |x| by using hyperbolic function tanhx [1].

2. The Main Result

Theorem 1 : The approximation g(x) = x · tanh(x/µ);µ > 0 ∈ R to |x| satisfies

dg(x)

dx
=
x

µ
· sech2

(
x

µ

)
+ tanh

(
x

µ

)
(2.1)

and

||x| − x · tanh

(
x

µ

)
| < µ. (2.2)

Proof : To establish (2.2), we first show that -

x · tanh

(
x

µ

)
≤ |x| (2.3)

In [0,∞), we have |x| − x · tanh
(
x
µ

)
= x− x · tanh

(
x
µ

)
= x[1− tanh

(
x
µ

)
].

As, x ∈ [0,∞) and 0 ≤ tanh
(
x
µ

)
< 1, therefore |x| − x · tanh

(
x
µ

)
≥ 0, that means

x · tanh
(
x
µ

)
≤ |x|.

In (−∞, 0], we have |x| − x · tanh
(
x
µ

)
= −x − x · tanh

(
x
µ

)
= −x[1 + tanh

(
x
µ

)
].

As, −x ≥ 0 and −1 < tanh
(
x
µ

)
≤ 0, therefore |x| − x · tanh

(
x
µ

)
≥ 0, that means

x · tanh
(
x
µ

)
≤ |x|. In fact, in both the situations 0 ≤ x · tanh

(
x
µ

)
≤ |x|.

Now, to prove (2.2) there are two cases -

Case 1 : If x = 0, then the result is obvious.

Case 2 : If x 6= 0, then 0 < x · tanh
(
x
µ

)
≤ |x| which implies that |x · tanh

(
x
µ

)
| ≤ |x|,

giving us

| tanh

(
x

µ

)
| ≤ 1.
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Thus, 1 is the least upper bound of the set {| tanh
(
x
µ

)
| : µ > 0}. Therefore

1 < | tanh

(
x

µ

)
|+ |µ|
|x|
, i.e. 1− | tanh

(
x

µ

)
| < |µ|
|x|
.

Consider,

||x| − x · tanh

(
x

µ

)
| = ‖x| − |x · tanh

(
x

µ

)
|| = ||x| − |x| · | tanh

(
x

µ

)
||

= |x| · {1− tanh

(
x

µ

)
|}

< |x| · |µ|
|x|

= |µ| = µ.

2

Note : x · tanh
(
x
µ

)
≤ |x| < x · tanh

(
x
µ

)
+ µ and lim

µ→0
x · tanh

(
x
µ

)
= |x|.

The following figures show how fast x · tanh
(
x
µ

)
and

√
x2 + µ2 approach to |x| for

µ = 0.1 and µ = 0.01.
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                                                                           Fig . 1  μ = 0.1 

 

                                                                             Fig. 2   μ = 0.01 
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3. Conclusion

x ·tanh
(
x
µ

)
;µ→ 0 is investigated as a smooth transcendental approximation to |x| and

it has the following properties -

1. The formula is easy to remember.

2. It is a better smooth approximation than
√
x2 + µ in terms of accuracy.

3. It is superior transcendental approximation than log(e2x + 1)− x.

4. It is as good as x · erf
(
x
µ

)
.
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