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Abstract

Graph colouring and its generalizations are useful tools in modelling a wide variety
of scheduling and assignment problems. In [6], the authors intorduced the notion of
semiring valued (in short, S−valued) graphs. In this paper we introduce the notion
of line graph of a S−valued graph GS and relate it with the edge-chromatic number
of GS .

1. Introduction

In the mathematical discipline of graph theory, the line graph of an undirected graph G

is another graph L(G) that represents the adjacencies between edges of G. The name line

graph comes from a paper by [4] although both [13] and [5] used the construction before

this. Other terms used for the line graph include the covering graph, the derivative, the

edge-to-vertex dual, the conjugate, the representative graph, the interchange graph, the

adjoint graph, and the derived graph.
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[13] proved that with one exceptional case the structure of a connected graph G can be

recovered completely from its line graph. Many other properties of line graphs follow

by translating the properties of the underlying graph from vertices into edges, and by

Whitney’s theorem the same translation can also be done in the other direction.

Line graphs are used to track changes over short and long periods of time. When smaller

changes exist, line graphs are better to use than bar graphs. Line graphs can also be

used to compare changes over the same period of time for more than one group. A

line graph L(G) (also called an adjoint, conjugate, covering, derivative, derived, edge,

edge-to-vertex dual, interchange, representative) of a simple graph G is obtained by

associating a vertex with each edge of the graph and connecting two vertices with an

edge iff the corresponding edges of G have a vertex in common [3].

In [6], the authors introduced the notion of semiring valued graphs. In [7], we have

introduced the notion of K-Coloring of S-valued graphs, which partitions the set of

vertex set of a S−valued graph GS into classes in such a way that, for each pair of

vertives of GS , whether or not they are allowed to be in the same class. In [9] and

[10], we have studied the bounds and the chromatic numbers of some S− valued graphs

of K-Colorable S-valued graphs. It dealt with the vertex colouring of the S−valued

graph GS . In [11], we have introduced the notion of edge-colouring which has been

reformulated in [12] where the edges of S− valued graph GS are coloured with different

colours rather than the vertices of GS .

In this paper, we introduce the notion of line graphs in GS and discuss some of its

properties.

2. Preliminaries

In this section, we recall some basic definitions that are needed for our work.

Definition 2.1 [1,5] : A K−vertex colouring of a graph G is an assignment of

K−colours to the vertices of G such that no two adjacent vertices receive the same

colour.

Definition 2.2 [1,5] : A graph G that required K−different colours for its colouring

and not less, is called a K−chromatic graph and the number K is called the chromatic

number of G.
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Definition 2.3 [1, 5] : If χ(G) = K,G is said to be K−chromatic.

Definition 2.4 [6] : A semiring (S,+, ·) is an algebraic system with a non-empty set

Stogether with two binary operations + and · such that

1. (S,+, 0) is a monoid.

2. (S, ·) is a semigroup.

3. For all a, b, c ∈ S, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

4. 0 · x = x · 0 = 0 ∀ x ∈ S.

Definition 2.5 [6] : Let (S,+, ·) be a semiring. � is said to be a Canonical preorder

if for a, b ∈ S, a � b if and only if there exists c ∈ S such that a+ c = b.

Definition 2.6 [6] : Let G = (V,E ⊂ V ×V ) be the underlying graph with V,E 6= φ. For

any semiring (S,+, ·), a Semiring-valued graph (or an S−valued graph) GS is defined

to be the graph GS = (V,E, σ, ψ) where σ : V → S and ψ : E → S is defined to be

ψ(x, y) =

{
min {σ(x), σ(y)} if σ(x) � σ(y) or σ(y) � σ(x)

0 otherwise

for every unordered pair (x, y) of E ⊂ V ×V. We call σ, a S−vertex set and ψ, a S−edge

set of S−graph GS .

Definition 2.7 [6] : The open neighbourhood of vi in GS is defined as

NS(vi) = {(vj , (σ(vj)), where (vi, vj) ∈ E, ψ(vi, vj) ∈ S} and the closed neighbourhood

of vi in GS is defined as the set NS [vi] = NS(vi) ∪ {(vi, σ(vi))}.
Definition 2.8 [6] : The degree of a vertex vi of the S−valued graph GS is defined as

degS(vi) = (
∑

vj∈NS(vi)
ψ(vivj), d(vi)) where d(vi) is the number of edges incident with

vi.

Definition 2.9 [5] : Consider the S−valued graph GS = {V,E, σ, ψ}. A colour-

ing of GS is given by a function f : V × V → S × C such that for all v ∈ V,

f(v, v) = (σ(v), c(v)), c(v) ∈ C.

3. Line Graphs of GS

In this section, we introduce the notion of line graph of S−valued graphs.
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Definition 3.1 : Consider a S− valued graph GS = (VS , ES). The line graph of GS ,

denoted by L(GS), is a graph whose vertices are the edges of GS such that the edges

with a common end point in GS are adjacent in L(GS). That is, e, f ∈ E(L(GS)) if and

only if e, f are the edges in GS− having a common end point.

Alternatively We can define the Line graph of a graph GS as follows.

Definition 3.2 : Consider the graph G = (V,E) where V = {v1, v2, · · · , vm} so that

| V |= m and E =
{
eji = (vi, vj)/1 ≤ i, j ≤ m

}
with | E |= n.

Let VS = {(vi, σ(vi))/i = 1, 2, · · · ,m} and ES =
{

(eji , ψ(eji ))/1 ≤ i, j ≤ m
}
.

Then a S− valued graph corresponding to the given crisp graph G is given by GS =

(VS , ES).

The line graph L(GS) of GS is defined as follows:

VS(L(GS)) =
{
eJi ∈ ES

}
andES(L(GS)) =

{
(eji , e

k
i )/eji , e

k
i ∈ VS(L(GS))

}
.

Example 3.3 : Consider the Semiring S = ({0, a, b, c} ,+, ·) with the following Cayley

table.

+ 0 a b c

0 0 a b c

a a a b c

b b b b b

c c c b c

· 0 a b c

0 0 0 0 0

a 0 0 a 0

b 0 a b c

c 0 0 c c

Let � be a canonical pre-order in S, given by 0 � 0, 0 � a, 0 � b, a � a, a � b, a �
c, b � b, c � b, c � c. Consider the S−valued graph GS :

The line graph L(GS) of the S−valued graph GS is given by:
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Example 3.4 : Consider the semi ring (S,+, ·) given in Example 3.3. Consider the S

valued graph GS
1 on 7 vertices with two components given below:

The line graph L(GS
1 ) of GS

1 is given by:
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From the above two examples, we observe the following facts connecting a given S−valued

graph GS and its line graph L(GS).

1. The graph GS− is connected iff its line graph L(GS) is connected.

2. If HS is a sub graph of GS , then L(HS) is a subgraph of L(GS).

3. The only connected S−valued graph that is isomorphic to its line graph is a

S−cycle CS
n for n ≥ 3.

4. A graph HS is the line graph of some other S−valued graph GS if and only if it

is possible to find a collection of cliques in HS , partitioning the edges of HS , so

that each vertex of HS belong to atmost two of the cliques.

Example 3.5 : In example 3.3, VS = {v1(a), v2(b), v3(c), v4(b), v5(a)} so that | VS |= 5

and | ES |= 6. Now,

| VS |S=
∑
vi∈VS

σ(vi) = b

Thus,(| VS |S , | VS |) = (b, 5).

| ES |S=
∑

eji∈ES

ψ(eji ) = c

Therfore (| ES |S , | ES |) = (c, 6).

| V (L(GS)) |S=
∑

eji∈ES

ψ(eji ) = c
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Also, | V (L(GS)) |= 6 so that,(
| V (L(GS)) |S , | V (L(GS)) |

)
= (| ES |S , | ES |) = (c, 6).

| E(L(GS)) |S=
∑

eji∈ES

min
(
ψ(eji ), ψ(ekj )

)
= c

Since, | E(L(GS)) |= 9, we have
(
| E(L(GS)) |S , | E(L(GS)) |

)
= (c, 9).

For i = 1, 2, 3, 4, 5 we now calculate |NS(vi)|S of the vertices in GS as follows:

|NS(v1)|S = a; |NS(v2)|S = c; |NS(v3)|S = c; |NS(v4)|S = c; |NS(v5)|S = a.

Then,
∑

vi∈VS

|NS(vi)|S = a+ c+ c+ c+ a = c

Now, for i = 1, 2, 3, 4, 5

(
d(v1)

2

)
= 3;

(
d(v2)

2

)
= 3(

d(v3)
2

)
= 1;

(
d(v4)

2

)
= 1;

(
d(v5)

2

)
= 1. Thus,

∑
vi∈VS

(
d(vi)

2

)
= 9.

Hence,

( ∑
vi∈VS

|NS(vi)|S ,
∑

vi∈VS

(
d(vi)

2

))
= (c, 9).

This gives us the number of vertices and edges in L(GS) corresponding to GS as follows:

(| V (L(GS)) |S , | V (L(GS)) |) = (| E(GS) |S , | E(G) |))

and

(| E(L(GS)) |S , | E(L(GS)) |) =

 ∑
eji∈ES

ψ(eji ),
∑
vi∈VS

(
d(vi)

2

)
The above discussion leads to the following theorem.

Theorem 3.6 : The number of vertices and edges in L(GS) are given by

(| V (L(GS)) |S , | V (L(GS)) |) = (| E(GS) |S , | E(G) |))

and

(| E(L(GS)) |S , | E(L(GS)) |) =

 ∑
eji∈ES

ψ(eji ),
∑
vi∈VS

(
d(vi)

2

)
Proof : The vertices of a line graph L(GS) correspond to the edges of graph GS , and

two distinct edges of GS are adjacent in L(GS) if and only if they share a common
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point. Formally, we consider the graph G = (V,E) where V = {v1, v2, · · · , vm} so that

| V |= m and E =
{
eji = (vi, vj)/1 ≤ i, j ≤ m

}
with | E |= n.

Let VS = {(vi, σ(vi))/i = 1, 2, · · · ,m} and ES =
{

(eji , ψ(eji ))/1 ≤ i, j ≤ m
}
.

Then a S− valued graph corresponding to the given crisp graph G is given by GS =

(VS , ES).

The line graph L(GS) of GS is given by

VS(L(GS)) =
{
eJi ∈ ES

}
andES(L(GS)) =

{
(eji , e

k
i )/eji , e

k
i ∈ VS(L(GS))

}
.

This gives a bijection between the edge set of GS and the vertex set of L(GS) and also

a bijection between the vertex set of GS and the edge set of L(GS). These bijections

complete the proof of the theorem.

Theorem 3.7 : The line graph of the starKS
1,n is the complete graph KS

n

Proof : Consider the star KS
1,n = (VS , ES) where VS = {(v0, σ(v0)), (vi, σ(vi)) | i =

1, 2, ..., n} with (v0, σ(v0)) as its pole.

Then the edge set of k1,n is ES = {(ei0, ψ(ei0)) | i = 1, 2, ..., n}
For L(KS

1,n) the V (L(KS
1,n)) = {(ei0, ψ(ei0)) | 1 = 1, 2, ..., n} so that |V (L(KS

1,n))| = n

In E(KS
1,n), e, f are adjacent if e, f are adjacent in KS

1,n. Which is obvious as the common

point shared by them in the pole (v0, σ(v0).

Thus in L(KS
1,n) every pair of vertices (ei0, e

j
0), 1 ≤ i, j ≤ n are adjacent, proving that

L(KS
1,n) is a complete graph on n vertices.

Theorem 3.8 : The line graph of S−cycle CS
n is a S−cycle.

Proof : Consider the cycle CS
n = (VS , ES) where VS = {(vi, σ(vi)) | i = 1, 2, · · · , n} with

(v1, σ(v1)) as its initial and end point. Then the edge set of CS
n is ES = {(ei+1

i , ψ(ei+1
i )) |

i = 1, 2, · · · , n}.
For L(CS

n ) the V (L(CS
n )) =

{
(ei+1

i , ψ(ei+1
i )) | 1 = 1, 2, · · · , n

}
so that | V (L(CS

n )) |= n.

In E(L(CS
n )), two edges e, f are adjacent if the edges e, f are adjacent in CS

n .. Consider

eii−1, e
i+1
i , ei+2

i+1, 2 ≤ i ≤ (n − 1). Then the edge ei+1
i , 2 ≤ i ≤ (n − 1) is adjacent to

the edges ei+2
i+1 and eii−1. Further, e21 is adjacent to both the edges e32 and e1n. Thus, ei+1

i

will be adjacent to only two edges only, for i = 1, 2, · · · , n, proving that the line graph

L(CS
n ) of a cycle CS

n is a cycle.

Theorem 3.9 : The line graph of a S−path PS
n is a S−path.

Proof : Consider the path PS
n = (VS , ES) where VS = {(v0, σ(v0)), (vi, σ(vi)) | i =

1, 2, · · · , n}. Then the edge set of PS
n is ES = {(ei+1

i , ψ(ei+1
i )) | i = 0, 1, 2, · · · , n}.
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For L(PS
n ) the V (L(PS

n )) =
{

(ei+1
i , ψ(ei+1

i )) | 1 = 1, 2, · · · , n
}

so that |V (L(PS
n ))| = n.

As for the case of a cycle, in a S−path also, two edges in L(PS
n ) will be adjacent if and

only if they are adjacent in PS
n . Consider the edges eii−1, e

i+1
i , ei+2

i+1, 1 ≤ i ≤ (n − 2).

Then the edge ei+1
i , 1 ≤ i ≤ (n − 2) is adjacent to the edges eii−1 and ei+1

i . Further,

enn−1 is adjacent to the edge en−1n−2 only and the edge e21 is adjacent to the edge e32 only.

This shows that the line graph L(PS
n ) of a path PS

n is a S−path from the vertex e21 of

L(PS
n ) (the edge e21 of PS

n connecting v1 to v2) to the vertex enn−1 of L(PS
n ) (the edge

enn−1 of PS
n connecting vn−1 to vn), thus completing the proof of the theorem.

A line graph can be used to convert the edge colouring problem into a vertex colouring

problem. Thus we have the following theorem.

Theorem 3.10 : For any graph GS , χ′S(GS) = χS(L(GS).

Proof : The vertices of a line graph L(G) correspond to the edges of graph G, it follows

directly from the definitions that the edge colorings of G are in one-to-one correspon-

dence with the vertex colorings of L(G). This bijection preserves lots of properties (the

coloring to be proper, equitable, having at least a given distance between any two ele-

ments of the same color or at most a given diameter in each component of every colour

class, excluding alternately bi-colored cycles, etc.). Hence the corresponding versions

of the chromatic index of G are equal to those of the chromatic number of L(G), thus

proving the theorem.

Alternatively, we shall prove the same result, in detail, as follows:

Consider the S−valued graph GS = (VS , ES), where VS = {(vi, σ(vi))/i = 1, 2, · · · ,m}
and ES =

{
(eji , ψ(eji ))/1 ≤ i, j ≤ m

}
.

Consider the S−valued graphGS = {V,E, σ, ψ} and a colouring class C = {c1, c2, · · · , ck}of

GS .

We shall introduce the following notation. For an edge eji = (vi, vj) ∈ ES the corre-

sponding vertex in V (L(GS)) will be denoted by (eji )
′ and vice-versa.

Let a vertex-colouring of GS be given by a function φ : VS → C such that for all

vi ∈ VS , φ(vi) = c(vi) c(vi) ∈ C. To this vertex-colouring of GS , we associate an edge-

colouring π : E(L(GS))→ C of the line graph L(GS) by

π((eji )
′, (eki )′) = φ(vi) where {vi} = eji ∩ e

k
i · · · · · · (1)

Due to the degree condition, every vertex of GS is the intersection of atleast two edges.



122 T. V. G. SHRIPRAKASH & M. CHANDRAMOULEESWARAN

Hence every colour used in φ occurs in the colouring π also. Thus, it is easy to prove

that the definition given in (1) that gives the correspondence π 7→ φ is a bijection,

completing the proof of the theorem.
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