International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 153-158

A COMPARITIVE STUDY ON *P*-FUZZY BIRINGS USING BIRINGS

S. PRIYADARSHINI

Assistant Professor in PG and Research Department of Mathematics, J. J. College of Arts and Science (Autonomous), Pudukkkottai, India

Abstract

We give definition for P-Fuzzy algebra on the Algebra A, Fuzzy rings, P-fuzzy rings and P-fuzzy sub birings. Then we study the connection of P-fuzzy subalgebras with fuzzy Bi-rings. Some Properties of P-Fuzzy subrings are stated and proved.

Introduction

Fuzzy sets originated in a seminar paper by Lotfi A. Zadeh in 1965. A fuzzy set A is defined as a map from A to the real unit interval I = [0, 1]. It has grown by leaps and bounds and innumerable numbers have appeared in various journals. Applications of fuzzy sets and fuzzy logic were introduced by Mamdani in 1975.

A group is an algebraic system with one binary operation. Generalizing Z along with two operations + and \cdot using the properties distributive and associative under \cdot , the concept of Ring arises.

Key Words : P-fuzzy subalgebras, P-fuzzy rings and P-fuzzy subrings.© http: //www.ascent-journals.comUGC approved journal (Sl No. 48305)

The definitions given to the concept of P-Fuzzy set, P-fuzzy subalgebra on the algebra A and fuzzy rings also involve different operations. Now we unify and generalize these definitions using P-fuzzy Birings. The theorems proved also highly generalize the existing ones.

1. Preliminaries

Definition 1.1 : If (P, \leq) is a partially ordered set and X is a nonempty set, then any mapping $A \to P$ is a P-fuzzy subset of A or a P-fuzzy set on A, denoted by P^A . **Definition 1.2** : Let A be a non-empty set *

- (i) (P, *) be a monoid, where 1 is the unity for .
- (ii) (P, \leq) be a Partially ordered set aith 1 as the greatest element.
- (iii) * be isotone in both variables.

 ${\cal P}$ always denotes such a structure.

Definition 1.3 : A *P*-fuzzy set $\mu \in P^A$ is called a *P*-fuzzy algebra or fuzzy subalgebra on the algebra *A*, if

- For any $n ary(n \ge 1)$ operation $f \in F$ $\mu(f(x_1, \cdots, x_n) \ge \mu(x_1) \ast \cdots \ast \mu(x_n)$ for all $x_1, \cdots, x_n \in A$.
- For any constant (nullary operation) $C \mu(c) \ge \mu(x)$ for all $x \in A$.

(Note : If A is a group then nullary operation is consequence of n - ary operation). Definition 1.4 : Let G be a group. A fuzzy subset μ of a group G is called a fuzzy subgroup of the group G if

- $\mu(xy) \ge \min(\mu(x), \mu(y))$ for every $x, y \in G$ and
- $\mu(x^{-1}) = \mu(x)$ for every $x \in G$.

Definition 1.5: A fuzzy subset μ of a ring R is called a Fuzzy subring of R if for all $x, y \in R$. then

- $\mu(x-y) \ge \min(\mu(x), \mu(y))$
- $\mu(xy) \ge \min(\mu(x), \mu(y))$ for all $x, y \in R$.

Proposition 1.6 : Let μ be a fuzzy subring of (R, +, .) then

- μ is a fuzzy subgroup of (R, +)
- μ is a fuzzy subgroupoid of (R, \cdot) .

2. P-Fuzzy Subbi-Ring

Definition 2.1 : A *P*-fuzzy subset $\mu \in P^A$ is called a *P*-Fuzzy subring of *R* of the algebra *A* if for all $x, y \in R$ then

- $\mu(x-y) \ge (\mu(x), \mu(y))$
- $\mu(xy) \ge \min(\mu(x), \mu(y))$ for all $x, y \in R$.

Definition 2.2: A non-empty set (R, +, .) with two binary operations '+' and '.' is called *P*-Fuzzy biring if $R = R_1 \cup R_2$ where R_1 and R_2 are proper subsets of R and

- $(R_1, +, .)$ is a *P*-Fuzzy ring
- $(R_2, +, .)$ is a P Fuzzy ring.

Note : A *P*-Fuzzy biring R is called finite if R contains only finite number of elements. If R has infinite number of elements then R is of infinite order.

Definition 2.3: A *P*-Fuzzy biring $R = R_1 \cup R_2$ is called *P*-Fuzzy commutative biring if both R_1 and R_2 are commutative rings. Even if one of R_1 or R_2 is not a commutative biring then the biring is a non-commutative biring. Also the biring *R* has a monounit if a unit exists which is common to both R_1 and R_2 . If R_1 and R_2 are rings which has separate unit then the biring $R = R_1 \cup R_2$ is a biring with unit.

Definition 2.4: Let $R = (R_1 \cup R_2, +, .)$ be a biring. The map $\mu : R \to [0, 1]$ is called *P*-Fuzzy subbiring of the ring *R* if there exists two fuzzy subsets μ_1 (of R_1) and $-\mu_2$ (of R_2) such that

- $(\mu_1, +, .)$ is a *P*-Fuzzy Subring of $(R_1, +, .)$
- $(\mu_2, +, .)$ is a *P*-Fuzzy Subring of $(R_2, +, .)$
- $\mu = \mu_1 \cup \mu_2$.

3. Propertie of *P*-Fuzzy Sub bi-ring

Theorem 3.1: Every *t*-level subset of a *P*-Fuzzy sub-biring μ of a biring $R = R_1 \cup R_2$ need not in general be a sub-biring of the biring R.

Proof: By definition $R = (R_1 \cup R_2, +, .)$ be a biring and $\mu = \mu_1 \cup \mu_2$ be a *P*-Fuzzy sub biring of the biring *R*. Then the bilevel subset of the *P*-Fuzzy sub-biring μ of the biring *R* is $G^t \mu = G_1^t \mu_1 \cup G_2^t \mu_2$ for every $t \in \{0, \min\{\mu_1(0), \mu_2(0)\}\}$.

If $t \in \{0, \min\{\mu_1(0), \mu_2(0)\}\}$ then the bilevel subset be a sub-biring.

If $t \in \{0, \min\{\mu_1(0), m_2(0)\}\}$ then the bilevel subset need not in general be a sub-biring of the biring R.

Theorem 3.2 (Characterization Theorem) : Let R be a biring where $R = R_1 \cup R_2$ and $\mu = \mu_1 \cup \mu_2$ be a P-Fuzzy sub-biring of the biring R. A non empty subset $S = S_1 \cup S_2$ of R is a P-Fuzzy subring of R if and only if $R_1 \cup S = S_1$ and $R_2 \cup S = S_2$ are P-Sub biring of R_1 and R_2 .

Proof: Let R be a biring where $R = R_1 \cup R_2$ and $\mu = \mu_1 \cup \mu_2$ be a P-Fuzzy sub-biring of the biring R.

Consider a non empty subset $S = S_1 \cup S_2$ of R is a P-Fuzzy subring of R. It is clear that R and S are P-Fuzzy sub-biring, also S_1 and S_2 are sub biring.

 $\Rightarrow R_1 \cup S = S_1$ is a *P*-Fuzzy subring, since *S* is a *P*-Fuzzy subring,

 $\Rightarrow R_2 \cup S = S_2$ is a *P*-Fuzzy subring, since *S*? is a *P*-Fuzzy subring.

Conversely, $R_1 \cup S = S_1$ and $R_2 \cup S = S_2$ are *P*-Fuzzy subring.

- S_1 and S_2 is a *P*-Fuzzy subring, since *S* is a *P*-Fuzzy subring.
- $S = S_1 \cup S_2$ of R is a P-Fuzzy subring of R.

Theorem 3.3: Every *P*-Fuzzy sub-biring of a ring R is a *P*-Fuzzy subring of the ring R and not conversely.

Proof: Using the definition of *P*-Fuzzy subbiring, Let $R = (R_1 \cup R_2, +, .)$ be a biring. The map $\mu : R \to [0, 1]$ is called *P*-Fuzzy subbiring of the ring *R* if there exists two fuzzy subsets μ_1 (of R_1) and μ_2 (of R_2) such that

- $(\mu_1, +, .)$ is a *P*-Fuzzy Subring of $(R_1, +, .)$
- $(\mu_2, +, .)$ is a *P*-Fuzzy Subring of $(R_2, +, .)$
- $\mu = \mu_1 \cup \mu_2$.

Every P-fuzzy sub-biring of a ring R is a P-fuzzy subring of R.

Conversely, if μ is a *P*-fuzzy subring of *R* and there does not exist two *P*-fuzzy subring of *R*.

157

Theorem 3.4 : If $\mu = \mu_1 \cup \mu_2$ is any *P*-Fuzzy sub-biring of the biring $R = R_1 \cup R_2$ and if $\mu(x) < \mu(y)$ for some $x, y \in R$ then $\mu(x - y) = \mu(x) = \mu(y - x)$.

Proof: By the definition of *P*-Fuzzy subbiring, let $R = (R_1 \cup R_2, +, .)$ be a biring. The map $\mu : R \to [0, 1]$ is called *P*-Fuzzy subbiring of the ring *R* if there exists two fuzzy subsets μ_1 (of R_1) and μ_2 (of R_2) such that

- $(\mu_1, +, .)$ is a *P*-Fuzzy Subring of $(R_1, +, .)$
- $(\mu_2, +, .)$ is a *P*-Fuzzy Subring of $(R^2, +, .)$
- $\mu = \mu_1 \cup \mu_2$.

Since under the operation addition there exists the inverse function subtraction $\rightarrow f = \{+, -\}$.

Since $x.y \in A$

•
$$\mu(x - y) \ge \min(\mu(x), \mu(y)) \ge \mu(x) \text{ (since } \mu(x) < \mu(y))$$
 (1)
Similarly

•
$$\mu(y-x) \ge \min(\mu(x), \mu(y)) \ge \mu(x) \text{ (since } \mu(x) < \mu(y))$$
 (2)

Also under the operation

$$\mu(xy) \ge \min(\mu(x), \mu(y)) \ge \mu(x) \text{ (since } \mu(x) < \mu(y)). \tag{3}$$

From result (1), (2) and (3)

 \Rightarrow If $\mu(x) < \mu(y)$ then $\mu(x - y) = \mu(x) = \mu(y - x)$.

Threorem 3.5 : The intersection of two *P*-fuzzy subbirings of a ring R is a *P*-fuzzy subbirings of R.

Theorem 3.6 : The union of the two *P*-fuzzy subirings of a ring R need not be a ring R.

Proof: Let A' and B' be two P-fuzzy subbirings of a ring R. Also one is not contained in the other and A' and B' are non-empty sets. Consider $A' \cup B' = C'$. Now, let e be the identity element of A' under the operation + and satisfy the property of abelian under the same operation. Similarly, e' be the identity element of B' under the operation + and satisfy the property of abelian under the same operation.

By definition of ring, A' and B' are associative under . and A' and B' satisfies distributive law.

If e = e' then $A' \cup B'$ is again a *P*-fuzzy ring, otherwise contradicts.

Theorem 3.7: Let R be a P-fuzzy finite biring and S be a P-fuzzy subring of R then the order of S divides order of R.

References

- Rosenfeld A., Fuzzy Graphs. In Fuzzy sets and their applications to cognitive and decision process, pages 77-95, Academic Press, (1975).
- [2] Zimmermann, H. J., Fuzzy Set Theory and its Applications, Second edition.
- [3] Anthony I. M. and Sherwood H., Fuzzy groups redefined, Journal Math. Anal. Appl., 69 (1979), 124-130.
- [4] Gougen J. A., L-fuzzy sets. Journal Math. Anal. Appl., 18 (1967), 145-174.
- [5] Laszlo filep, Study of fuzzy algebras and relations from a general viewpoint, acta Mathematica Academiae Paedagogicae Nyrlregyhaziensis, Tonus, 14 (1998), 49-55.
- [6] Zadeh L. A., Fuzzy sets. Information Control, 8 (1965), 338-353.
- [7] Filep L., Fundamentals of a general theory of fuzzy relations and algebras. In Proc. 4th IFSA World congress, Pages 70-74, Brussels (1991).
- [8] Ovchinnikov S., Similarity relation, Fuzzy Partitions and Fuzzy Orderings, Fuzzy Sets and Systems, 40 (1991) 107-126.
- [9] Seselja B., Tepavcevic A., On a construction of codes by P-fuzzy sets, Univ. u NovomSaduZb. Rad. Prirod. Mat. Fak. Ser. Mat., 20(2) (1990), 71-80.
- [10] Seselja B., Tepavcevic A., Partially ordered and relational valued fuzzy relations I, Fuzzy Sets and Systems.