International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 159-163

FIXED POINT OF ASYMPTOTICALLY REGULAR MAPPINGS
 OF c-DISTANCE ON CONE METRIC SPACE

K. ANTHONY SINGH ${ }^{1}$, L. SHAMBHU SINGH ${ }^{2}$ AND

Th. CHHATRAJIT SINGH ${ }^{3}$
1,2 Department of Mathematics,
D. M. Collge of Science, Imphal, Manipur-795001, India
${ }^{3}$ Department of Mathematics,
Manipur Technical University, Imphal, Manipur-795004, India

Abstract

In this paper we introduce and establish fixed point theorems of asymptotically regular mappings of c-distance on Cone Metric Space. Our results generalise and extends some fixed some theorems exiting in the literature.

1. Introduction

Definition 1.1 [9]: Let E be a real Banach space and P be a subset of $E . P$ is called a cone if

Key Words : One metric space, Asymptotically regular sequences, c-distance, Common fixed point.

2000 AMS Subject Classification : 47H10, 54H25.
(c) http: //www.ascent-journals.com

UGC approved journal (Sl No. 48305)
(i) P is a closed, non-empty and $P=\{0\}$
(ii) $a, b \in R, a, b \geq 0, x, y \in P$ implies $a x+b y \in P$.
(iii) $x \in P$ and $-x \in P$ imply $x=0$.

Given a cone $P \subseteq E$, we define a partial ordering " \leq " in E by $x \leq y$ if $y-x \in P$. We write $x<y$ to denote $x \leq y$ but $x=y$ and $x<y$ to denote $y-x \in P^{0}$, where P^{0} stands for the interior of P.
Proposition 1.2 [1] : Let P be a cone in a real Banach space E. If $a \in P$ and $a \leq k a$, for some $k \in[0,1)$ then $a=0$.
Proposition 1.3 [1] : Let P be a cone in a real Banach space E. If for $a \in E$ and $a \ll c$, for all $c \in P^{0}$, then $a=0$.
Remark 1.4 [10] : $\lambda P^{0} \subseteq P^{0}$, for $\lambda>0$ and $P^{0}+P^{0} \subseteq P^{0}$.
Definition $1.5[9]$: Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies
(a) $0 \leq d(x, y)$, for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$.
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(c) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
Example $1.6([4],[13]):$ Let $E=R^{3}, P=\{(x, y, z) \in B: x, y, z \geq 0\}$ and $X=R$.
Define $d: X \in X \rightarrow E$ by $d(x, y)=(a|x-y|, \beta|x-y|, \gamma|x-y|)$ where α, β, γ are positive constants. Then (X, d) is a cone metric space.
Definition $1.7[9]$: Let (X, d) be a cone metric space. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $0 \ll c$ there is a positive integer $N c$ such that for all $n>N c, d\left(x_{n}, x\right) c$, then the sequence $\left\{x_{n}\right\}$ is said to converges to x and x is called limit of $\left\{x_{n}\right\}$. We write $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
Definition $1.8[9]:$ Let (X, d) be a cone metric space. Let $\{x-n\}$ be a sequence in X. If for any $c \in E$ with $0 \ll c$ there is a natural number N such that for all $n, m>N$, $d\left(x_{n}, x_{m}\right) \ll c$, then the sequence $\left\{x_{n}\right\}$ is said to be a Cauchy sequence in X.
Definition $1.9[9]$: Let (X, d) be a cone metric space. If every Cauchy sequence in X is convergent in X, then X is called a complete cone metric space.

Proposition 1.10 [12] : Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If $u \leq v, v \ll w$ then $u \ll w$.

Lemma 1.11 [12] : Let (X, d) be a cone metric space and P be a cone in a real Banach space E and $k_{1}, k_{2}, k_{3}, k_{4}, k>0$. If $x_{n} \rightarrow x, y_{n} \rightarrow y, z_{n} \rightarrow z$ and $p_{n} \rightarrow p$ in X and (i) $k a \leq k_{1} d\left(x_{n}, x\right)+k_{2} d\left(y_{n}, y\right)+k_{3} d\left(z_{n}, z\right)+k_{4} d\left(p_{n}, p\right)$ then $a=0$.

Definition 1.11: Let (X, d) be a cone metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be asymptotically T-regular if $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$.
Definition 1.12: Let (X, d) be a cone metric space. Then a function $p: X \times X \rightarrow E$ is called a c-distance on X if the followings are satisfied.
(1) $0 \leq p(x, y)$ for all $x, y \in X$.
(2) $p(x, z) \leq p(x, y)+p(y, z)$ for all $x, y, z \in X$;
(3) for each $x \in X$ and $n \geq 1$, if $p\left(x, y_{n}\right) \leq u$ for some $u=u_{n}$, then $p(x, y) \leq u$ whenever $\left\{y_{n}\right\}$ is a sequence in X conversing to a point $y \in X$;
(4) for all $c \in E$ with $0 \ll c$, there exists $e \in E$ with $0 \ll e$ such that $p(z, x) \ll e$ and $p(z, y) \ll e$ imply $d(x, y) \ll c$.

Example $1.13[16]$: Let (X, d) be a cone metric space and P be a normal cone. Define a mapping $p: X \times X \rightarrow E$ by $p(x, y)=d(x, y)$ for all $x, y \in X$. Then p is c-distance.
Example 1.14 [16] : Let $E=R$ and $P=\{x \in E: x \geq 0\}$. Let $X=[0, \infty)$ and define a mapping $d: X \times X \rightarrow E$ by $d(x, y)=|x-y|$ for all $x, y \in E$. Then (X, d) is a cone metric space. Define a mapping $p: X \times X \rightarrow E$ by $p(x, y)=y$ for all $x, y \in X$. Then p is c-distance.

Remark 1.15: On c-distance $p(x, y)=p(y, x)$ does not necessarily hold and $p(x, y)=0$ is not necessarily equivalent to $x=y$ for all $x, y \in X$.
Definition 1.16: Let (X, d) be a cone metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be asymptotically T-regular of c-distance if $\lim _{n \rightarrow \infty} p\left(x_{n}, T x_{n}\right)=0$.
Lemma 1.17 : Let (X, d) be cone metric space, p be a c-distance on X and $\left\{x_{n}\right\}$ be sequence in X. If there exists the sequence $\left\{x_{n}\right\}$ in P conversing to 0 and $p\left(x_{n}, x_{m}\right) \leq x_{n}$ for $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

2. Main Result

Theorem 2.1: Let (X, d) be a complete cone metric space. Let p be a c-distance on X and T be a self-mapping of X satisfying the inequality

$$
p(T x, T y) \leq a_{1} p(x, T x)+a_{2} p(y, T y)+a_{3} p(x, T y)+a_{4} p(y, T x)+a_{5} p(x, y)
$$

for all $x, y \in X$ where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \geq 0$ and $\max \left(a_{1}+a_{4}\right),\left(a_{3}+a_{4}+a_{5}\right)<1$.
If there exists an asymptotically T-regular sequence in X, then T has a unique fixed point.
Proof: Let $\left\{x_{n}\right\}$ be an asymptotically T-regular sequence of c-distance in X. Then

$$
\begin{aligned}
p\left(x_{n}, x_{m}\right) \leq & p\left(x_{n}, T x_{n}\right)+p\left(T x_{n}, x_{m}\right) \\
\leq & p\left(x_{n}, T x_{n}\right)+p\left(T x_{n}, T x_{m}\right)+p\left(T x_{m}, x_{m}\right) \\
\leq & p\left(x_{n}, T x_{n}\right)+p\left(T x_{m}, x_{m}\right)+a_{1} p\left(x_{n}, T x_{n}\right)+a_{2} p\left(x_{m}, T x_{m}\right) \\
& +a_{3} p\left(x_{n}, T x_{m}\right)+a_{4} p\left(x_{m}, T x_{n}\right)+a_{5} p\left(x_{n}, x_{m}\right) \\
\leq & p\left(x_{n}, T x_{n}\right)+p\left(T x_{m}, x_{m}\right)+a_{1} p\left(x_{n}, T x_{n}\right)+a_{2} p\left(x_{m}, T x_{m}\right) \\
& +a_{3} p\left(x_{n}, x_{m}\right)+a_{3} p\left(x_{m}, T x_{m}\right)+a_{4} p\left(x_{m}, x_{n}\right)+a_{4} p\left(x_{n}, T x_{n}\right)+a_{5} p\left(x_{n}, x_{m}\right) \\
= & \left(1+a_{1}+a_{4}\right) p\left(x_{n}, T x_{n}\right)+\left(1+a_{2}+a_{3}\right) p\left(x_{m}, T x_{m}\right)+\left(a_{3}+a_{4}+a_{5}\right) p\left(x_{n}, x_{m}\right) \\
\Rightarrow & {[1 \cdot(a 3+a 4+a 5)] p(x n, x m) \cdot(1+a 1+a 4) p(x n, T x n)+(1+a 2+a 3) p(x m, T x m) } \\
\Rightarrow & p\left(x_{n}, x_{m}\right) \leq \frac{\left(1+a_{1}+a_{4}\right)}{\left[1-\left(a_{3}+a_{4}+a_{5}\right)\right]} p\left(x_{n}, T x_{n}\right)+\frac{\left(1+a_{2}+a_{3}\right)}{\left[1-\left(a_{3}+a_{4}+a_{5}\right)\right]} \\
\Rightarrow & p\left(x_{n}, x_{m}\right) \leq M_{1} p\left(x_{n}, T x_{n}\right)+M_{2} p\left(x_{m}, T x_{m}\right)
\end{aligned}
$$

where $M_{1}=\frac{\left(1+a_{1}+a_{4}\right)}{\left[1+\left(a_{3}+a_{4}+a_{5}\right)\right]}$ and $M_{2}=\frac{\left(a_{1}+a_{2}+a_{3}\right)}{\left[1-\left(a_{3}+a_{4}+a_{5}\right)\right]}$.
Since $\left\{x_{n}\right\}$ is an asymptotically T-regular sequence of c-distance and $m>n$. Therefore, $p\left(x_{n}, T x_{n}\right)=0$ and $p\left(x_{m}, T x_{m}\right)=0$ when $n \rightarrow \infty$.
Choose a natural number N, such that $\left[M_{1} d\left(x_{n}, T x_{n}\right)+M_{2} d\left(x_{m}, T x_{m}\right)\right] \ll u_{n}$ for all $m, n \geq N$. Thus $p\left(x_{n}, x_{m}\right) \lll u_{n}$ for $m>n$. Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence in X which is a complete. So $\left\{x_{n}\right\} \rightarrow x \in X$.

References

[1] Ilic D., Rakocevie V., Quasi contraction on a cone metric space, Applied Mathematics Letters, article in press.
[2] Turkoglu D. and Abuloha M., Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Mathematica Sinica,English Series, submitted.
[3] Turkoglu D. and Abuloha M. and Abdeljawad T., KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Analysis: Theory, Methods and Applications, 72(1) (2010), 348-353.
[4] Erdal Karapinar, Fixed point theorems in cone banach spaces, Fixed point theory and Applications, (2009), Article ID 609281.
[5] Browder F. E., Petryshyn W. V., The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer Math. Soc., 72 [1966], 571-575.
[6] Hardy G. E. and Rogers T. D., A generalization of fixed point theorem of Reich Canad, Math. Bull., 16 (1973), 201-206.
[7] Sahin I. and Telci M., Fixed points of contractive mappings on complete cone metric spaces, Hacettepe Journal of Mathematics and statistics, 38(1) (2009), 59-67.
[8] Olaleru J. O., Some generalizations of fixed point theorems in cone metric spaces, Fixed point theory and Applications (2009), Article ID 657914.
[9] Huang L. G. and Zhang X., Cone metric Spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applica- tions, 332(2) (2007), 1468-1476.
[10] Sh. Rezapour and Hamlbarani R., Some notes on the paper cone met- ric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 345(2) (2008), 719-724.
[11] Sh. Rezapour, Derafshpour M. and Hamlbarani R., A review on topological properties of cone metric spaces, in Analysis Topology and Applica- tions 2008 (ATA 2008), Technical Faculty Cacak University of Kragujevac Vrnjacka Banja, Serbia, the 30th of May to the 4th of June, 2008.
[12] Jain Shobha, Jain Shishir, Bahadur Lal, Compatibility and weak compatibility for four self maps in a cone metric space. Bulletin of Mathematical Analysis and Applications, 2(Issue 1) (2010), 15-24.
[13] Thabet Abdeljawad and Erdal Karapinar, Quasi cone metric spaces and Generalization of Caristi Kirk's theorem, Fixed point Theory and Applications, (2009), Article ID 574387.

