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Abstract

In this paper we introduce and establish fixed point theorems of asymptotically
regular mappings of c-distance on Cone Metric Space. Our results generalise and
extends some fixed some theorems exiting in the literature.

1. Introduction

Definition 1.1 [9] : Let E be a real Banach space and P be a subset of E. P is called

a cone if
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(i) P is a closed, non-empty and P = {0}

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P .

(iii) x ∈ P and −x ∈ P imply x = 0.

Given a cone P ⊆ E, we define a partial ordering “ ≤′′ in E by x ≤ y if y − x ∈ P .

We write x < y to denote x ≤ y but x = y and x < y to denote y − x ∈ P 0, where P 0

stands for the interior of P .

Proposition 1.2 [1] : Let P be a cone in a real Banach space E. If a ∈ P and a ≤ ka,

for some k ∈ [0, 1) then a = 0.

Proposition 1.3 [1] : Let P be a cone in a real Banach space E. If for a ∈ E and

a� c, for all c ∈ P 0, then a = 0.

Remark 1.4 [10] : λP 0 ⊆ P 0, for λ > 0 and P 0 + P 0 ⊆ P 0.

Definition 1.5 [9] : Let X be a nonempty set. Suppose the mapping d : X ×X → E

satisfies

(a) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y.

(b) d(x, y) = d(y, x) for all x, y ∈ X.

(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 1.6 ([4],[13]) : Let E = R3, P = {(x, y, z) ∈ B : x, y, z ≥ 0} and X = R.

Define d : X ∈ X → E by d(x, y) = (a|x−y|, β|x−y|, γ|x−y|) where α, β, γ are positive

constants. Then (X, d) is a cone metric space.

Definition 1.7 [9] : Let (X, d) be a cone metric space. Let {xn} be a sequence in X

and x ∈ X. If for every c ∈ E with 0 � c there is a positive integer Nc such that for

all n > Nc, d(xn, x)c, then the sequence {xn} is said to converges to x and x is called

limit of {xn}. We write lim
n→∞

xn = x or xn → x as n→∞.

Definition 1.8 [9] : Let (X, d) be a cone metric space. Let {x−n}be a sequence in X.

If for any c ∈ E with 0 � c there is a natural number N such that for all n, m > N ,

d(xn, xm)� c, then the sequence {xn} is said to be a Cauchy sequence in X.

Definition 1.9 [9] : Let (X, d) be a cone metric space. If every Cauchy sequence in X

is convergent in X, then X is called a complete cone metric space.
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Proposition 1.10 [12] : Let (X, d) be a cone metric space and P be a cone in a real

Banach space E. If u ≤ v, v � w then u� w.

Lemma 1.11 [12] : Let (X, d) be a cone metric space and P be a cone in a real Banach

space E and k1, k2, k3, k4, k > 0. If xn → x, yn → y, zn → z and pn → p in X and

(i) ka ≤ k1d(xn, x) + k2d(yn, y) + k3d(zn, z) + k4d(pn, p) then a = 0.

Definition 1.11 : Let (X, d) be a cone metric space. A sequence {xn} in X is said to

be asymptotically T -regular if lim
n→∞

d(xn, Txn) = 0.

Definition 1.12 : Let (X, d) be a cone metric space. Then a function p : X ×X → E

is called a c-distance on X if the followings are satisfied.

(1) 0 ≤ p(x, y) for all x, y ∈ X.

(2) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(3) for each x ∈ X and n ≥ 1, if p(x, yn) ≤ u for some u = un, then p(x, y) ≤ u

whenever {yn} is a sequence in X conversing to a point y ∈ X;

(4) for all c ∈ E with 0� c, there exists e ∈ E with 0� e such that p(z, x)� e and

p(z, y)� e imply d(x, y)� c.

Example 1.13 [16] : Let (X, d) be a cone metric space and P be a normal cone. Define

a mapping p : X ×X → E by p(x, y) = d(x, y) for all x, y ∈ X. Then p is c-distance.

Example 1.14 [16] : Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define

a mapping d : X ×X → E by d(x, y) = |x − y|for all x, y ∈ E. Then (X, d) is a cone

metric space. Define a mapping p : X ×X → E by p(x, y) = y for all x, y ∈ X. Then p

is c-distance.

Remark 1.15 : On c-distance p(x, y) = p(y, x) does not necessarily hold and p(x, y) = 0

is not necessarily equivalent to x = y for all x, y ∈ X.

Definition 1.16 : Let (X, d) be a cone metric space. A sequence {xn} in X is said to

be asymptotically T -regular of c-distance if lim
n→∞

p(xn, Txn) = 0.

Lemma 1.17 : Let (X, d) be cone metric space, p be a c-distance on X and {xn} be se-

quence in X. If there exists the sequence {xn} in P conversing to 0 and p(xn, xm) ≤ xn
for m > n, then {xn} is a Cauchy sequence in X.
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2. Main Result

Theorem 2.1 : Let (X, d) be a complete cone metric space. Let p be a c-distance on

X and T be a self-mapping of X satisfying the inequality

p(Tx, Ty) ≤ a1p(x, Tx) + a2p(y, Ty) + a3p(x, Ty) + a4p(y, Tx) + a5p(x, y)

for all x, y ∈ X where a1, a2, a3, a4, a5 ≥ 0 and max(a1 + a4), (a3 + a4 + a5) < 1.

If there exists an asymptotically T -regular sequence in X, then T has a unique fixed

point.

Proof : Let {xn} be an asymptotically T -regular sequence of c-distance in X. Then

p(xn, xm) ≤ p(xn, Txn) + p(Txn, xm)

≤ p(xn, Txn) + p(Txn, Txm) + p(Txm, xm)

≤ p(xn, Txn) + p(Txm, xm) + a1p(xn, Txn) + a2p(xm, Txm)

+a3p(xn, Txm) + a4p(xm, Txn) + a5p(xn, xm)

≤ p(xn, Txn) + p(Txm, xm) + a1p(xn, Txn) + a2p(xm, Txm)

+a3p(xn, xm) + a3p(xm, Txm) + a4p(xm, xn) + a4p(xn, Txn) + a5p(xn, xm)

= (1 + a1 + a4)p(xn, Txn) + (1 + a2 + a3)p(xm, Txm) + (a3 + a4 + a5)p(xn, xm)

⇒ [1.(a3 + a4 + a5)]p(xn, xm).(1 + a1 + a4)p(xn, Txn) + (1 + a2 + a3)p(xm, Txm)

⇒ p(xn, xm) ≤ (1 + a1 + a4)

[1− (a3 + a4 + a5)]
p(xn, Txn) +

(1 + a2 + a3)

[1− (a3 + a4 + a5)]

⇒ p(xn, xm) ≤M1p(xn, Txn) +M2p(xm, Txm)

where M1 = (1+a1+a4)
[1+(a3+a4+a5)]

and M2 = (a1+a2+a3)
[1−(a3+a4+a5)]

.

Since {xn} is an asymptotically T -regular sequence of c-distance and m > n. Therefore,

p(xn, Txn) = 0 and p(xm, Txm) = 0 when n→∞.

Choose a natural number N , such that [M1d(xn, Txn) + M2d(xm, Txm)] � un for all

m,n ≥ N . Thus p(xn, xm)�< un for m > n. Therefore {xn} is a Cauchy sequence in

X which is a complete. So {xn} → x ∈ X.
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