International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 159-163

FIXED POINT OF ASYMPTOTICALLY REGULAR MAPPINGS OF *c*-DISTANCE ON CONE METRIC SPACE

K. ANTHONY SINGH¹, L. SHAMBHU SINGH² AND

Th. CHHATRAJIT SINGH³

^{1,2} Department of Mathematics,
D. M. Collge of Science, Imphal, Manipur-795001, India
³ Department of Mathematics,
Manipur Technical University, Imphal, Manipur-795004, India

Abstract

In this paper we introduce and establish fixed point theorems of asymptotically regular mappings of c-distance on Cone Metric Space. Our results generalise and extends some fixed some theorems exiting in the literature.

1. Introduction

Definition 1.1 [9]: Let E be a real Banach space and P be a subset of E. P is called a cone if

Key Words : One metric space, Asymptotically regular sequences, c-distance, Common fixed point.

2000 AMS Subject Classification : 47H10, 54H25.

© http://www.ascent-journals.com

UGC approved journal (Sl No. 48305)

- (i) P is a closed, non-empty and $P = \{0\}$
- (ii) $a, b \in R, a, b \ge 0, x, y \in P$ implies $ax + by \in P$.
- (iii) $x \in P$ and $-x \in P$ imply x = 0.

Given a cone $P \subseteq E$, we define a partial ordering " \leq " in E by $x \leq y$ if $y - x \in P$. We write x < y to denote $x \leq y$ but x = y and x < y to denote $y - x \in P^0$, where P^0 stands for the interior of P.

Proposition 1.2 [1]: Let P be a cone in a real Banach space E. If $a \in P$ and $a \leq ka$, for some $k \in [0, 1)$ then a = 0.

Proposition 1.3 [1]: Let P be a cone in a real Banach space E. If for $a \in E$ and $a \ll c$, for all $c \in P^0$, then a = 0.

Remark 1.4 [10] : $\lambda P^0 \subseteq P^0$, for $\lambda > 0$ and $P^0 + P^0 \subseteq P^0$.

Definition 1.5 [9]: Let X be a nonempty set. Suppose the mapping $d: X \times X \to E$ satisfies

(a)
$$0 \le d(x, y)$$
, for all $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$.

(b)
$$d(x, y) = d(y, x)$$
 for all $x, y \in X$.

(c)
$$d(x,y) \le d(x,z) + d(z,y)$$
 for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 1.6 ([4],[13]) : Let $E = R^3$, $P = \{(x, y, z) \in B : x, y, z \ge 0\}$ and X = R. Define $d : X \in X \to E$ by $d(x, y) = (a|x-y|, \beta|x-y|, \gamma|x-y|)$ where α, β, γ are positive constants. Then (X, d) is a cone metric space.

Definition 1.7 [9]: Let (X, d) be a cone metric space. Let $\{x_n\}$ be a sequence in Xand $x \in X$. If for every $c \in E$ with $0 \ll c$ there is a positive integer Nc such that for all n > Nc, $d(x_n, x)c$, then the sequence $\{x_n\}$ is said to converges to x and x is called limit of $\{x_n\}$. We write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.

Definition 1.8 [9]: Let (X, d) be a cone metric space. Let $\{x - n\}$ be a sequence in X. If for any $c \in E$ with $0 \ll c$ there is a natural number N such that for all n, m > N, $d(x_n, x_m) \ll c$, then the sequence $\{x_n\}$ is said to be a Cauchy sequence in X.

Definition 1.9 [9]: Let (X, d) be a cone metric space. If every Cauchy sequence in X is convergent in X, then X is called a complete cone metric space.

Proposition 1.10 [12]: Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If $u \leq v, v \ll w$ then $u \ll w$.

Lemma 1.11 [12]: Let (X, d) be a cone metric space and P be a cone in a real Banach space E and $k_1, k_2, k_3, k_4, k > 0$. If $x_n \to x, y_n \to y, z_n \to z$ and $p_n \to p$ in X and (i) $ka \le k_1 d(x_n, x) + k_2 d(y_n, y) + k_3 d(z_n, z) + k_4 d(p_n, p)$ then a = 0.

Definition 1.11: Let (X, d) be a cone metric space. A sequence $\{x_n\}$ in X is said to be asymptotically T-regular if $\lim_{n \to \infty} d(x_n, Tx_n) = 0$.

Definition 1.12: Let (X, d) be a cone metric space. Then a function $p: X \times X \to E$ is called a *c*-distance on X if the followings are satisfied.

- (1) $0 \le p(x, y)$ for all $x, y \in X$.
- (2) $p(x,z) \le p(x,y) + p(y,z)$ for all $x, y, z \in X$;
- (3) for each $x \in X$ and $n \ge 1$, if $p(x, y_n) \le u$ for some $u = u_n$, then $p(x, y) \le u$ whenever $\{y_n\}$ is a sequence in X conversing to a point $y \in X$;
- (4) for all $c \in E$ with $0 \ll c$, there exists $e \in E$ with $0 \ll e$ such that $p(z, x) \ll e$ and $p(z, y) \ll e$ imply $d(x, y) \ll c$.

Example 1.13 [16]: Let (X, d) be a cone metric space and P be a normal cone. Define a mapping $p: X \times X \to E$ by p(x, y) = d(x, y) for all $x, y \in X$. Then p is c-distance.

Example 1.14 [16]: Let E = R and $P = \{x \in E : x \ge 0\}$. Let $X = [0, \infty)$ and define a mapping $d : X \times X \to E$ by d(x, y) = |x - y| for all $x, y \in E$. Then (X, d) is a cone metric space. Define a mapping $p : X \times X \to E$ by p(x, y) = y for all $x, y \in X$. Then pis *c*-distance.

Remark 1.15: On *c*-distance p(x, y) = p(y, x) does not necessarily hold and p(x, y) = 0 is not necessarily equivalent to x = y for all $x, y \in X$.

Definition 1.16: Let (X, d) be a cone metric space. A sequence $\{x_n\}$ in X is said to be asymptotically T-regular of c-distance if $\lim_{n \to \infty} p(x_n, Tx_n) = 0$.

Lemma 1.17: Let (X, d) be cone metric space, p be a c-distance on X and $\{x_n\}$ be sequence in X. If there exists the sequence $\{x_n\}$ in P conversing to 0 and $p(x_n, x_m) \le x_n$ for m > n, then $\{x_n\}$ is a Cauchy sequence in X.

2. Main Result

Theorem 2.1 : Let (X, d) be a complete cone metric space. Let p be a c-distance on X and T be a self-mapping of X satisfying the inequality

$$p(Tx, Ty) \le a_1 p(x, Tx) + a_2 p(y, Ty) + a_3 p(x, Ty) + a_4 p(y, Tx) + a_5 p(x, y)$$

for all $x, y \in X$ where $a_1, a_2, a_3, a_4, a_5 \ge 0$ and $\max(a_1 + a_4), (a_3 + a_4 + a_5) < 1$. If there exists an asymptotically *T*-regular sequence in *X*, then *T* has a unique fixed point.

Proof: Let $\{x_n\}$ be an asymptotically *T*-regular sequence of *c*-distance in *X*. Then

$$\begin{split} p(x_n, x_m) &\leq p(x_n, Tx_n) + p(Tx_n, x_m) \\ &\leq p(x_n, Tx_n) + p(Tx_n, Tx_m) + p(Tx_m, x_m) \\ &\leq p(x_n, Tx_n) + p(Tx_m, x_m) + a_1 p(x_n, Tx_n) + a_2 p(x_m, Tx_m) \\ &\quad + a_3 p(x_n, Tx_m) + a_4 p(x_m, Tx_n) + a_5 p(x_n, x_m) \\ &\leq p(x_n, Tx_n) + p(Tx_m, x_m) + a_1 p(x_n, Tx_n) + a_2 p(x_m, Tx_m) \\ &\quad + a_3 p(x_n, x_m) + a_3 p(x_m, Tx_m) + a_4 p(x_m, x_n) + a_4 p(x_n, Tx_n) + a_5 p(x_n, x_m) \\ &= (1 + a_1 + a_4) p(x_n, Tx_n) + (1 + a_2 + a_3) p(x_m, Tx_m) + (a_3 + a_4 + a_5) p(x_n, x_m) \\ &\Rightarrow [1.(a_3 + a_4 + a_5)] p(xn, xm).(1 + a_1 + a_4) p(xn, Txn) + (1 + a_2 + a_3) p(xm, Txm) \\ &\Rightarrow p(x_n, x_m) \leq \frac{(1 + a_1 + a_4)}{[1 - (a_3 + a_4 + a_5)]} p(x_n, Tx_n) + \frac{(1 + a_2 + a_3)}{[1 - (a_3 + a_4 + a_5)]} \\ &\Rightarrow p(x_n, x_m) \leq M_1 p(x_n, Tx_n) + M_2 p(x_m, Tx_m) \end{split}$$

where $M_1 = \frac{(1+a_1+a_4)}{[1+(a_3+a_4+a_5)]}$ and $M_2 = \frac{(a_1+a_2+a_3)}{[1-(a_3+a_4+a_5)]}$. Since $\{x_n\}$ is an asymptotically *T*-regular sequence of *c*-distance and m > n. Therefore, $p(x_n, Tx_n) = 0$ and $p(x_m, Tx_m) = 0$ when $n \to \infty$.

Choose a natural number N, such that $[M_1d(x_n, Tx_n) + M_2d(x_m, Tx_m)] \ll u_n$ for all $m, n \geq N$. Thus $p(x_n, x_m) \ll u_n$ for m > n. Therefore $\{x_n\}$ is a Cauchy sequence in X which is a complete. So $\{x_n\} \to x \in X$.

References

- [1] Ilic D., Rakocevie V., Quasi contraction on a cone metric space, Applied Mathematics Letters, article in press.
- [2] Turkoglu D. and Abuloha M., Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Mathematica Sinica, English Series, submitted.
- [3] Turkoglu D. and Abuloha M. and Abdeljawad T., KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Analysis: Theory, Methods and Applications, 72(1) (2010), 348-353.
- [4] Erdal Karapinar, Fixed point theorems in cone banach spaces, Fixed point theory and Applications, (2009), Article ID 609281.
- [5] Browder F. E., Petryshyn W. V., The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer Math. Soc., 72 [1966], 571-575.
- [6] Hardy G. E. and Rogers T. D., A generalization of fixed point theorem of Reich Canad, Math. Bull., 16 (1973), 201-206.
- [7] Sahin I. and Telci M., Fixed points of contractive mappings on complete cone metric spaces, Hacettepe Journal of Mathematics and statistics, 38(1) (2009), 59-67.
- [8] Olaleru J. O., Some generalizations of fixed point theorems in cone metric spaces, Fixed point theory and Applications (2009), Article ID 657914.
- [9] Huang L. G. and Zhang X., Cone metric Spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applica- tions, 332(2) (2007), 1468-1476.
- [10] Sh. Rezapour and Hamlbarani R., Some notes on the paper cone met- ric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 345(2) (2008), 719-724.
- [11] Sh. Rezapour, Derafshpour M. and Hamlbarani R., A review on topological properties of cone metric spaces, in Analysis Topology and Applica- tions 2008 (ATA 2008), Technical Faculty Cacak University of Kragujevac Vrnjacka Banja, Serbia, the 30th of May to the 4th of June, 2008.
- [12] Jain Shobha, Jain Shishir, Bahadur Lal, Compatibility and weak compatibility for four self maps in a cone metric space. Bulletin of Mathematical Analysis and Applications, 2(Issue 1) (2010), 15-24.
- [13] Thabet Abdeljawad and Erdal Karapinar, Quasi cone metric spaces and Generalization of Caristi Kirk's theorem, Fixed point Theory and Applications, (2009), Article ID 574387.