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Abstract

Modular natchings were first studied by Duffus, Kierstead and Snevily in 1994 with
the aim of using them to solve the middle two layers conjecture. The conjecture
has now been proved by T. Mütze (2014). In 2005, Horák, Kaiser, Rosenfeld and
Ryjác̆ek used them to show that the middle two layers graph has a hamiltonian
prism. They also showed that the graph formed by 3 consecutive modular match-
ings is connected. In this paper we show a stronger result that a component of
two consecutive modular matchings and any other third modular matching is 3-
connected.

1. Introduction

In 1971 Tutte made a conjecture that every 3-connected cubic bipartite graph is hamil-

tonian. Although this was refuted by Horton [3] in 1982 by constructing a 3-connected
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bicubic graph with 92 vertices having no hamiltonian cycle. In fact, earlier(in 1976) he

had constructed such a graph with 96 vertices. In this paper 3-connected cubic bipartite

graphs are formed by suitably chosing 3 modular matchings.

This provides with another class of such graphs, in which Tutte conjecture can be

tested or refused. We will first introduce the necessary notation used to define modular

matchings. They were introduced by Duffus, Kierstead and Snevily [1] in connection

with the middle two layer’s conjecture which says that the middle two layer’s graph is

hamiltonian. Since any hamilton cycle can be decomposed into two perfect matchings,

if there is a large collection of matchings at hand, to work with, perhaps two of them

can be joined appropriately to give a hamilton cycle. It was with this in mind, that the

modular matchings were introduced and they provided an aid to understand the middle

to layer’s graph, which will also be defined below.

The n-dimensional discrete cube, Qn is defined as the graph (V,E) where V consists

of all the subsets of [n], with [n] being the n-element set {1, 2, . . . , n}. And the edge

set E = {(A,B) : | A4 B |= 1}. The collection of all the j-element subsets of [n]

will be denoted by Rj and called the j’th layer of the discrete cube. When n is odd,

say n = 2k + 1, the middle two layers have the same size since
(
n
k

)
=
(

n
k+1

)
. The graph

induced by these middle two layers Rk and Rk+1 of the discrete cube Q2k+1 is called the

middle two layers graph and will be denoted by Bk. Given any j-element subset A, we

will write it as A =< a1, a2, . . . , aj > where we use the convention a1 < a2 < · · · < aj ,

and we write the complement of the set A as Ac =< ā1, ā2 . . . ān−j >, where it is

understood that ā1 > ā2 > . . . > ān−j . So, whenever there is no chance of confusion we

will write ar to mean that it is the r’th smallest element of A and ār will denote the

r’th largest element of Ac. S2k+1, as usual represents the symmetric group on [2k + 1].

The subset {x− r, x− r+ 1, . . . x− 1} which is a segment of r contiguous elements will

be denoted by any of the following self-evident ways: [x − r, x), [x − r, x − 1], (x − r −
1, x), (x− r, x− 1] depending on the inclusion/exclusion of the endpoints and where the

addition and subtraction is done modulo 2k+1. A 1-factor of a graph G, is a spanning

1−regular subgraph of G. It is a perfect matching of G. Decomposition of the edge-set

E(G) into a collection of 1-factors is called a 1-factorization ofG. So a 1-factorization

of Bk is a collection of k+1 disjoint perfect matchings. The modular matchings defined

provides one such factorization of Bk. For convenience, we will consider the modular
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matching in Bk as an injection m : Rk → Rk+1, such that A is adjacent to m(A).

Definition 1.1 : Given n = 2k + 1, the i-th modular matching for i = 1, 2, · · · k + 1 is

defined as the function m : Rk → Rk+1 where mi(A) = A ∪ {āj} where j is given by

j = i+
∑
a∈A

a (mod k + 1)

Thus the i’th modular matching mi in Bk consists of edges of the form (A,mi(A)),

where A is any k-element subset of [n]. Also for the set A, note that we have the

following relation between the element āj and j.

j = 2k + 1− āj− | a ∈ A : a > āj | +1

We also give the following definition which gives a rule from m : Rk+1 → Rk which is

used in [?] to show that the modular matchings are well-defined. It is, in fact the inverse

of the modular matching function.

Definition 1.2 : Given n = 2k + 1, for i = 1, 2, · · · k + 1 let bi be the function

bi : Rk+1 → Rk where bi(B) = B \ {al} where l is given by

l ≡ i+
∑
b∈B

b (mod k + 1)

Here, as before, note that bl is the l-th smallest element of B.

Definition 1.3 : Let Ha,b,c(k) denote the spanning subgraph of Bk whose edge set is

{ma,mb,mc}. If a = b − 1 and c = b + 1, that is, the matchings are consecutive, we

will use the notation Hb(k) to denote the resulting subgraph. We will use Ha,b,c or Hb,

if the value of k is clear from the context.

The above two subgraphs are cubic. Also, let Ha,b denote the 2-regular subgraph of Bk

whose edge set is {ma,mb}. The weight of the set A is the sum of all the elements of

A. For any permutation α of [n] and a subset A of [n], we let α(A) be the set obtained

by permuting the elements of A with α. One such set obtained by using the rotation

permutation σ = (1, 2, . . . n) will be of particular interest. The resulting set, σ(A), also

called the shift of A, is obtained by shifting each of the element by 1 (mod 2k + 1).

One immediately sees that σ2k+1(A) = A.
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2. On Connectivity

Horák, Kaiser, Rosenfeld and Ryjác̆ek [5] showed that the subgraph Hi is connected.

They did this by proving that every set A, which is not equal to {1, 2, · · · , k} is always

connected to another set of a smaller weight, using only the edges of Hi. This, thus

implied that every set is in the middle two layers graph, Bk is connected to the set

with the smallest weight {1, 2, · · · , k} in the subgraph Hi. Hence the entire graph

is connected. The same result was proved using a different method by Kelkar and

Maharshi [12]. The corollaries from [5] from their following theorem will be used to

prove the extended result on 3-connectedness of a suitably chosen cubic subgraph of Bk

Theorem 2.1 [ Horák, Kaiser, Rosenfeld and Ryjác̆ek] : Let A be a k-set on a

cycle C of the subgraph Hi,i+1 consisting of t segments, then σ(A) lies on the cycle C

and dC(A, σ(A)) = 2t or 2t+ 1.

Corollary 2.1 [ Horák, Kaiser, Rosenfeld and Ryjác̆ek] : Let C be the cycle

of Hi,i+1 containing the k-set A of Bk, then dC(A, σ(A)) = dC(σj(A), σj+1(A)) where

j ∈ {1, 2, . . . , 2k}

Corollary 2.2 [ Horák, Kaiser, Rosenfeld and Ryjác̆ek] : Let C be the cycle of

Hi,i+1 containing the k-set A of Bk and let (A,B) be an ml edge where l 6= i, i + 1.

Either B is not on the cycle C or dC(A,B) > dC(A, σ(A)).

We will now prove the following theorem which essentially says that any component of

the cubic subgraph of Bk formed by two consecutive modular matchings and any other

third matching is 3-connected.

Theorem 2.2 : Any component H of Hi,i+1,l is 3-connected where l 6∈ {i− 1, i}.

Proof : First, note that since H is connected and a cubic graph, it will be 3-connected

if it is 3-edge connected. Now, let F be an edge cut of H and let x ∈ma be an edge in

F where a ∈ {i− 1, i, l}. |F | ≥ 2 since the cycle through x in the 2-factor of ma ∪mb

where b 6= a and b ∈ {i − 1, i, l} will contain another edge y 6= x such that y ∈ F .

Suppose for contradiction that |F | = 2. If y ∈ mb where b 6= a, then we consider a

cycle through x in the 2-factor ma ∪mc where c ∈ {i − i, i, l} and c 6∈ {a, b}. Then,

F contains two edges from this cycle and along with y ∈ mb, we have |F | ≥ 3. Hence

both x and y are from the same matching ma.

First, suppose that a ∈ {i − 1, i}, so both the edges x, y ∈ ma. Consider the cycle C

in mi−1 ∪mi passing through x (and also y, otherwise we will be done!). Let P1 and
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P2 be the two paths of C \ {x, y} with P1 having the smaller length. Let P1 be in the

component R of H \ F and S = H \R. Let Ax be the vertex in R that is incident with

the edge x of the edge-cut F . If σ(Ax) 6∈ P2, then σ2k(Ax) will be on P2. This is true

since by corollary 3.1 we have dC(Ax, σ(Ax)) = dC(Ax, σ
2k(Ax)) and since |P1| ≤ |P2|,

if σ2k(A) also lies on P1, the two distances will not be equal. Hence σt(Ax) ∈ P2 either

for t = 1 or for t = 2k. Let B = ml(Ax). If B is not on the cycle C, consider the cycle

C1 of mi−1 ∪mi passing through the set B. The two cycles do not intersect, so C1

lies completely in R. All the shifts of B are in C1 so also in R. But then, σt(B) ∈ R
and we have σt(Ax) ∈ S, so the edge (σt(B), σt(Ax)) ∈ ml will be in the edge-cut F

making |F | ≥ 3. So, B is on the cycle C. If it is on P2, then the edge (Ax, B) is in the

edge-cut and we have |F | ≥ 3. So B is on P1. This forces σt(B) on P1 and hence the

edge (σt(B), σt(Ax)) ∈ml will again be in F , making |F | ≥ 3

Now consider the case when both the edges in F are in ml. Let x = (Ax, Bx) ∈ ml

be an edge of F . Let C1 be the cycle in mi−1 ∪mi passing through Ax and C2 be the

cycle in mi−1 ∪mi passing through Bx. If any of these two edges lie in F , its cardinal-

ity will be greater than 3. Hence C1 and C2 lie in different components of V \ F and

do not intersect. But, σj(Ax) ∈ C1 and σj(Bx) ∈ C2 for all j = 0 . . . 2k. And hence

(σj(Ax), σj(Bx)) ∈ ml are all edges between C1 and C2 for j = 0 . . . 2k. This gives

|F | ≥ 2k + 1 ≥ 3. So, we conclude that G is 3-edge connected and hence 3-connected.

3. Conclusion

Since we already know that the subgraph Hi is connected. By the above result, it will

be 3-connected. If we can use a similar technique to show that the subgraph formed

by two consecutive modular matchings and any other third matching is connected, we

will obtain a stronger result. In fact, the main motivation to give an alternate proof

regarding connectivity of Hi was to show this stronger result. Efforts are continued in

this direction.
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