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Abstract

Modular natchings were first studied by Duffus, Kierstead and Snevily in 1994 with
the aim of using them to solve the middle two layers conjecture. The conjecture
has now been proved by T. Miitze (2014). In 2005, Hordk, Kaiser, Rosenfeld and
Ryjacek used them to show that the middle two layers graph has a hamiltonian
prism. They also showed that the graph formed by 3 consecutive modular match-
ings is connected. In this paper we show a stronger result that a component of
two consecutive modular matchings and any other third modular matching is 3-
connected.

1. Introduction

In 1971 Tutte made a conjecture that every 3-connected cubic bipartite graph is hamil-
tonian. Although this was refuted by Horton [3] in 1982 by constructing a 3-connected
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bicubic graph with 92 vertices having no hamiltonian cycle. In fact, earlier(in 1976) he
had constructed such a graph with 96 vertices. In this paper 3-connected cubic bipartite

graphs are formed by suitably chosing 3 modular matchings.

This provides with another class of such graphs, in which Tutte conjecture can be
tested or refused. We will first introduce the necessary notation used to define modular
matchings. They were introduced by Duffus, Kierstead and Snevily [1] in connection
with the middle two layer’s conjecture which says that the middle two layer’s graph is
hamiltonian. Since any hamilton cycle can be decomposed into two perfect matchings,
if there is a large collection of matchings at hand, to work with, perhaps two of them
can be joined appropriately to give a hamilton cycle. It was with this in mind, that the
modular matchings were introduced and they provided an aid to understand the middle

to layer’s graph, which will also be defined below.

The n-dimensional discrete cube, Qy is defined as the graph (V, E) where V' consists
of all the subsets of [n], with [n] being the n-element set {1,2,...,n}. And the edge
set E ={(A,B): | AA B |=1}. The collection of all the j-element subsets of [n]
will be denoted by R; and called the j’th layer of the discrete cube. When n is odd,

say n = 2k + 1, the middle two layers have the same size since (Z) = ( ) The graph

K1
induced by these middle two layers Ry and Ry 11 of the discrete cube Qaxy1 is called the
middle two layers graph and will be denoted by By. Given any j-element subset A, we
will write it as A =< a1, a2,...,a; > where we use the convention a1 < as < --- < aj,
and we write the complement of the set A as A° =< a1,a2...a,—; >, where it is
understood that @1 > d@z > ... > a,—;. So, whenever there is no chance of confusion we
will write a, to mean that it is the 7’th smallest element of A and a, will denote the
r'th largest element of A€. Syxi1, as usual represents the symmetric group on [2k + 1].
The subset {z —r,z —r+1,...2 — 1} which is a segment of r contiguous elements will
be denoted by any of the following self-evident ways: [x — 7, x),[x —r,x — 1], (z —r —
1,z), (x —r,z — 1] depending on the inclusion/exclusion of the endpoints and where the
addition and subtraction is done modulo 2k +1. A 1-factor of a graph G, is a spanning
1—regular subgraph of G. It is a perfect matching of G. Decomposition of the edge-set
E(G) into a collection of 1- factors is called a 1- factorization of G. So a 1- factorization
of By is a collection of k+ 1 disjoint perfect matchings. The modular matchings defined

provides one such factorization of Bx. For convenience, we will consider the modular
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matching in By as an injection m : Ry — Ry 1, such that A is adjacent to m(A).
Definition 1.1 : Given n = 2k + 1, the i-th modular matching for ¢ = 1,2,---k + 1 is
defined as the function m : Ry — Ry where m;(A) = AU {a;} where j is given by

j=i+Y a (modk+1)

Thus the i’th modular matching m; in By consists of edges of the form (A, m;(A)),
where A is any k-element subset of [n]. Also for the set A, note that we have the

following relation between the element a; and j.
j=2k+1—-a;j—|acA:a>a;|+1

We also give the following definition which gives a rule from m : Rgy1 — Ry which is
used in [?] to show that the modular matchings are well-defined. It is, in fact the inverse
of the modular matching function.

Definition 1.2 : Given n = 2k + 1, for ¢« = 1,2,---k 4+ 1 let b; be the function
b; : Rki1 — Ry where bi(B) = B\ {a;} where [ is given by

[=i+) b (modk+1)

beB
Here, as before, note that b; is the [-th smallest element of B.
Definition 1.3 : Let H, (k) denote the spanning subgraph of By whose edge set is
{my, mp,m¢}. If a =0—1and ¢ = b+ 1, that is, the matchings are consecutive, we
will use the notation Hy(k) to denote the resulting subgraph. We will use Hy . or Hj,
if the value of k is clear from the context.
The above two subgraphs are cubic. Also, let H,; denote the 2-regular subgraph of By
whose edge set is {ma, mp}. The weight of the set A is the sum of all the elements of
A. For any permutation « of [n] and a subset A of [n], we let a(A) be the set obtained
by permuting the elements of A with . One such set obtained by using the rotation
permutation o = (1,2,...n) will be of particular interest. The resulting set, o(A), also
called the shift of A, is obtained by shifting each of the element by 1 (mod 2k + 1).

One immediately sees that o2**1(A) = A.
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2. On Connectivity

Hordk, Kaiser, Rosenfeld and Ryjacek [5] showed that the subgraph H; is connected.
They did this by proving that every set A, which is not equal to {1,2,--- |k} is always
connected to another set of a smaller weight, using only the edges of H;. This, thus
implied that every set is in the middle two layers graph, By is connected to the set
with the smallest weight {1,2,--- ,k} in the subgraph H;. Hence the entire graph
is connected. The same result was proved using a different method by Kelkar and
Maharshi [12]. The corollaries from [5] from their following theorem will be used to
prove the extended result on 3-connectedness of a suitably chosen cubic subgraph of By
Theorem 2.1 [ Hordk, Kaiser, Rosenfeld and Ryjacek] : Let A be a k-set on a
cycle C of the subgraph H; ;4 consisting of ¢ segments, then o(A) lies on the cycle C
and dco(A,0(A)) =2t or 2t + 1.

Corollary 2.1 [ Hordk, Kaiser, Rosenfeld and Ryjacéek] : Let C be the cycle
of H; ;41 containing the k-set A of By, then dc(A,0(A)) = dc(07(A), 09T(A)) where
je{1,2,...,2k}

Corollary 2.2 [ Hordk, Kaiser, Rosenfeld and Ryjacek] : Let C be the cycle of
H; 41 containing the k-set A of By and let (A, B) be an my edge where [ # ¢,i + 1.
Either B is not on the cycle C or do(A, B) > dc(A, 0(A)).

We will now prove the following theorem which essentially says that any component of
the cubic subgraph of By formed by two consecutive modular matchings and any other
third matching is 3-connected.

Theorem 2.2 : Any component H of H; ;11 is 3-connected where [ ¢ {i —1,}.
Proof : First, note that since H is connected and a cubic graph, it will be 3-connected
if it is 3-edge connected. Now, let F' be an edge cut of H and let x € m, be an edge in
F where a € {i — 1,4,1}. |F| > 2 since the cycle through x in the 2-factor of m, U my,
where b # a and b € {i — 1,4,1} will contain another edge y # x such that y € F.
Suppose for contradiction that |F| = 2. If y € my where b # a, then we consider a
cycle through z in the 2-factor my U m. where ¢ € {i —i,4,l} and ¢ ¢ {a,b}. Then,
F contains two edges from this cycle and along with y € my,, we have |F| > 3. Hence
both x and y are from the same matching m,.

First, suppose that a € {i — 1,i}, so both the edges =,y € m,. Consider the cycle C

in m;_1 Um,; passing through = (and also y, otherwise we will be done!). Let P; and
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P, be the two paths of C'\ {x,y} with P; having the smaller length. Let P; be in the
component R of H\ F and S = H \ R. Let A, be the vertex in R that is incident with
the edge z of the edge-cut F. If 0(A,) & P, then 0?*(A,) will be on P,. This is true
since by corollary 3.1 we have do(Ay, 0(Az)) = do(As, 0% (Ay)) and since |Pi| < | Py,
if 02#(A) also lies on P, the two distances will not be equal. Hence ot(A,) € P, either
for t =1 or for t = 2k. Let B = my(A,). If B is not on the cycle C, consider the cycle
C! of mj_; Um; passing through the set B. The two cycles do not intersect, so C!
lies completely in R. All the shifts of B are in C'! so also in R. But then, ¢/(B) € R
and we have o'(A,) € S, so the edge (¢!(B),0!(A;)) € my will be in the edge-cut F
making |F'| > 3. So, B is on the cycle C. If it is on P», then the edge (A, B) is in the
edge-cut and we have |F| > 3. So B is on P;. This forces ¢!(B) on P; and hence the
edge (c'(B),0'(Az)) € my will again be in F', making |F| > 3

Now consider the case when both the edges in F' are in my. Let z = (A,,B;) € my
be an edge of F'. Let (' be the cycle in m;_7 U m; passing through A, and Cs be the
cycle in m;_7 U m; passing through B,. If any of these two edges lie in F, its cardinal-
ity will be greater than 3. Hence Cy and Cj lie in different components of V' \ F' and
do not intersect. But, 0/(A;) € C1 and 07(B;) € Cy for all j = 0...2k. And hence
(07(Ay),07(Bz)) € my are all edges between C7 and Co for j = 0...2k. This gives
|F'| > 2k +1 > 3. So, we conclude that G is 3-edge connected and hence 3-connected.

3. Conclusion

Since we already know that the subgraph H; is connected. By the above result, it will
be 3-connected. If we can use a similar technique to show that the subgraph formed
by two consecutive modular matchings and any other third matching is connected, we
will obtain a stronger result. In fact, the main motivation to give an alternate proof
regarding connectivity of H; was to show this stronger result. Efforts are continued in

this direction.
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