
International J. of Math. Sci. & Engg. Appls. (IJMSEA)

ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 21-29

LOCALLY STANDARD (Z2)
m-MANIFLODS OVER POLYGONS

AND PRODUCTS OF TWO SIMPLICES

YANCHANG CHEN
College of Mathematics Information Science,

Henan Normal University, Xinxiang 453007, P. R. China

Abstract

In this paper, we calculate the number of equivariant homeomorphism classes of
locally standard (Z2)m-manifolds over polygons for m ≥ 2 and the number of
Davis-Januszkiewicz equivalence classes of locally standard (Z2)m-manifolds over
∆n1 ×∆n2 for m ≥ n1 + n2, where ∆ni is an ni-simplex for i = 1, 2.

1. Introduction Let Mn be an n-dimensional closed manifold with a locally standard

(Z2)
n-action (see [7]) and π : Mn → Xn = Mn/(Z2)

n be the orbit map. Then Xn is a

nice n-manifold with corners and the (Z2)
n-action determines a characteristic function

νπ (also called (Z2)
n-coloring) on the facets of Xn. In particular, when Xn is a simple

convex polytope, Mn is a small cover over Xn and there is a standard construction to

recover Mn from the characteristic function νπ on Xn (see [7]). Generally, we need an

additional data to recover Mn. In [10], Yu defined a general notion of locally standard

(Z2)
m-actions on n-dimensional closed manifolds for all m ≥ 1, which is actually a
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generalization of the notion of locally standard 2-torus manifold defined in [8] where m

is required to be equal to n.

This paper is motivated by the works [2], [3], [4], [5] and [9], which enumerate the number

of Davis-Januszkiewicz equivalence classes and equivariant homeomorphism classes of

small covers over a specific polytope. By using the ideas in the above papers, we

determine the number of equivariant homeomorphism classes of locally standard (Z2)
m-

manifolds over polygons for m ≥ 2 (see Theorem 3.2). Moreover, we calculate the

number of Davis-Januszkiewicz equivalence classes of locally standard (Z2)
m-manifolds

over ∆n1 ×∆n2 for m ≥ n1 + n2, where ∆ni is an ni-simplex for i = 1, 2 (see Theorem

4.1).

The paper is organized as follows. In Section 2, we review the notion of locally stan-

dard (Z2)
m-actions on n-dimensional manifolds and basic results about locally standard

(Z2)
m-manifolds over n-dimensional simple convex polytopes. In Section 3, we deter-

mine the number of locally standard (Z2)
m-manifolds over polygons up to equivariant

homeomorphism. In Section 4, we calculate the number of locally standard (Z2)
m-

manifolds over ∆n1 ×∆n2 up to Davis-Januszkiewicz equivalence.

2. Preliminaries

First, let us give the definition of locally standard (Z2)
m-actions on n-dimensional man-

ifolds for any m ≥ 1 (see [10]). Let g = (g1, · · · , gm) be an arbitrary element of (Z2)
m.

(1) If m ≤ n, the standard (Z2)
m-action on Rn is:

(x1, · · · , xn) 7−→ ((−1)g1x1, · · · , (−1)gmxm, xm+1, · · · , xn),

whose orbit space is Rn,m+ := {(x1, · · · , xn)|xi ≥ 0 for 1 ≤ i ≤ m}.

(2) For m > n, the standard (Z2)
m-action on Rn × (Z2)

m−n is:

((x1, · · · , xn), (h1, · · · , hm−n)) 7−→

(((−1)g1x1, · · · , (−1)gnxn), (gn+1 + h1, · · · , gm + hm−n)),

whose orbit space is Rn,n+ .

Suppose that (Z2)
m acts effectively on an n-dimensional closed manifold Mn. A local

isomorphism of Mn with the standard action consists of:
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(1) a group automorphism σ : (Z2)
m → (Z2)

m;

(2) (Z2)
m-stable open sets V in Mn and U in Rn (if m ≤ n) or Rn × (Z2)

m−n (if

m ≥ n);

(3) a σ-equivariant homeomorphism f : V → U , i.e. f(g · v) = σ(g) · f(v) for

any g ∈ (Z2)
m and v ∈ V .

Mn is locally isomorphic to the standard action if each point of Mn is in the domain

of some local isomorphism. Under this condition, we say the (Z2)
m-action on Mn is

locally standard and say that Mn is a locally standard (Z2)
m-manifold over Mn/(Z2)

m.

Now, suppose that Mn is a locally standard (Z2)
m-manifold over Mn/(Z2)

m. Then the

orbit space Xn = Mn/(Z2)
m is a nice manifold with corners (see [6] for the details of

a nice manifold with corners). Suppose π : Mn → Xn is the orbit map. Let the set of

facets (faces of codimension one) of Xn be F(Xn) = {F1, · · · , F`}. The characteristic

function ((Z2)
m-coloring) νπ : F(Xn)→ (Z2)

m is defined as follows:

νπ(Fj) = the element of (Z2)
m that fixes π−1(Fj) pointwise.

We may find that whenever Fj1 ∩ · · · ∩ Fjs 6= ∅, {νπ(Fj1), · · · , νπ(Fjs)} must be linearly

independent vectors in (Z2)
m over Z2.

An n-dimensional convex polytope is said to be simple, if exactly n facets meet at each

of its vertices (see [11]). An n-dimensional simple convex polytope is obviously a nice

n-manifold with corners. If m < n, the dimension of any face of the orbit space Xn is at

least n−m. So Xn must not be a simple convex polytope when m < n. In the rest of

the paper, suppose m ≥ n and that Xn is an n-dimensional simple convex polytope. In

fact, a locally standard (Z2)
n-manifold over an n-dimensional simple convex polytope

Xn is just a small cover over Xn.

In [10], Yu gave a reconstruction process of Mn by using the characteristic function

νπ and the product bundle Xn × (Z2)
m over Xn up to equivariant homeomorphism.

Following Davis and Januszkiewicz [7], we say that two locally standard (Z2)
m-manifolds

Mn and Nn over Xn are Davis-Januszkiewicz equivalent (or simply D-J equivalent) if

there is a homeomorphism f : Mn → Nn together with an element σ ∈ GL(m,Z2) such

that

(1) f(g · x) = σ(g) · f(x) for all g ∈ (Z2)
m and x ∈Mn, and
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(2) f induces the identity on the orbit space Xn.

Two locally standard (Z2)
m-manifolds Mn and Nn over Xn are equivariantly homeo-

morphic if there is a homeomorphism f : Mn → Nn such that f(g · x) = g · f(x) for all

g ∈ (Z2)
m and x ∈Mn. Let ν(Xn, (Z2)

m) := {ν : F(Xn)→ (Z2)
m | ν(Fj1), · · · , ν(Fjs)

are linearly independent vectors in (Z2)
m whenever Fj1 ∩ · · · ∩ Fjs 6= ∅}.

Then we have

Theorem 2.1 ([10]) : The set of D-J equivalence classes of locally standard (Z2)
m-

manifolds over Xn bijectively corresponds to the coset ν(Xn, (Z2)
m)/GL(m,Z2), where

GL(m,Z2) acts on ν(Xn, (Z2)
m) via automorphisms of the coefficient (Z2)

m.

Remark 1 : Without loss of generality, we assume that F1, · · · , Fn of F(Xn) meet at

one vertex p of Xn. Let e1, · · · , em be the standard basis of (Z2)
m. Write A(Xn) =

{ν ∈ ν(Xn, (Z2)
m)|ν(Fi) = ei, i = 1, · · · , n}. In fact, A(Xn) is the orbit space of

ν(Xn, (Z2)
m) under the action of GL(m,Z2). By Theorem 2.1, the order |A(Xn)| of

A(Xn) is the number of D-J equivalence classes in locally standard (Z2)
m-manifolds

over Xn.

Let Xn be a simple convex polytope of dimension n. All faces of Xn form a poset

(i.e., a partially ordered set by inclusion). An automorphism of F(Xn) is a bijection

from F(Xn) to itself which preserves the poset structure of all faces of Xn, and by

Aut(F(Xn)) we denote the group of automorphisms of F(Xn). One can define the right

action of Aut(F(Xn)) on ν(Xn, (Z2)
m) by ν×h 7−→ ν ◦h, where ν ∈ ν(Xn, (Z2)

m) and

h ∈ Aut(F(Xn)).

Theorem 2.2 : The set of equivariant homeomorphism classes of all n-dimensional

locally standard (Z2)
m-manifolds over Xn bijectively corresponds to the coset

ν(Xn, (Z2)
m)/Aut(F(Xn)).

3. Locally Standard (Z2)
m-manifolds Over Polygons

From [7], we know that the connected sum Q2 of k − 2 RP (2)
′
s is a small cover over

k-gon Pk, where RP (2) is the 2-dimensional real projective space. So Q2 is a locally

standard (Z2)
2-manifold over Pk. We can easily extend locally standard (Z2)

2-action on

Q2 to locally standard (Z2)
m-action on Q2 × (Z2)

m−2 with the orbit space unchanged

for m > 2. Thus, Q2× (Z2)
m−2 is a locally standard (Z2)

m-manifold over Pk for m > 2.

A coloring on k-gon Pk (with 2m − 1 colors) means to color edges of Pk in such a way
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that any adjacent edges have different colors.

Lemma 3.1 : |ν(Pk, (Z2)
m)| = (2m − 2)k + (−1)k(2m − 2).

Proof : Let S(k) be a segment with k + 1 vertices including the endpoints, so S(k)

has k segments. The number of coloring segments of S(k) with 2m − 1 colors in such a

way that any adjacent edges have different colors is (2m − 1) · (2m − 2)k−1. If the two

end segments have different colors, then it produces a coloring on Pk by gluing the end

points of S(k). If the two end segments have the same color, then it produces a coloring

on Pk−1 by gluing the end segments of S(k). Thus, we have that

(a) |ν(Pk, (Z2)
m)|+ |ν(Pk−1, (Z2)

m)| = (2m − 1) · (2m − 2)k−1.

It follows that

|ν(Pk, (Z2)
m)| − (2m − 2)|ν(Pk−1, (Z2)

m)|

= −(|ν(Pk−1, (Z2)
m)| − (2m − 2)|ν(Pk−2, (Z2)

m)|)

= · · ·

= (−1)k−3(|ν(P3, (Z2)
m)| − (2m − 2)|ν(P2, (Z2)

m)|).

and a observation shows that |ν(P3, (Z2)
m)| = (2m − 1) · (2m − 2) · (2m − 3) and

|ν(P2, (Z2)
m)| = (2m − 1) · (2m − 2), so

|ν(Pk, (Z2)
m)| − (2m − 2)|ν(Pk−1, (Z2)

m)| = (−1)k(2m − 1) · (2m − 2).

The lemma then follows from (a) and (b). �

By a1, · · · , ak we denote all edges of k-gon Pk in their general order. Let x, y be two

automorphisms of Aut(F(Pk)) with the following properties respectively:

(1) x(ai) = ai+1(i = 1, 2, · · · , k − 1), x(ak) = a1;

(2) y(ai) = ak+1−i(i = 1, 2, · · · , k).

Then, all automorphisms of Aut(F(Pk)) can be written in a simple form as follows:

xj or xjy, where j ∈ Zk.
Theorem 3.2 : Let ϕ denote the Euler’s totient function, that is, ϕ(1) = 1 and ϕ(N)

for a positive integer N(N ≥ 2) is the number of positive integers both less than N and

coprime to N. Let E(Pk) denote the number of equivariant homeomorphism classes of

locally standard (Z2)
m-manifolds over Pk. Then
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E(Pk) = 1
2k{

∑
d>1,d|k

ϕ(kd )|ν(Pd, (Z2)
m)|+ 1+(−1)k

2 · (2m − 1) · (2m − 2)
k
2 · k2}.

Proof : The famous Burnside Lemma (see [1]) says that if G is a finite group acting on

a set X, then

|X/G| = 1

|G|
∑
g∈G
|Xg|

where Xg = {x ∈ X|gx = x}. From Theorem 2.2 and Burnside Lemma, we have that

(a) E(Pk) =
1

2k

k−1∑
j=0

(|ν(Pk, (Z2)
m)x

j |+ |ν(Pk, (Z2)
m)x

jy|)

Let d be the greatest common divisor of j and k. Then all edges of Pk are divided

into d orbits under the action of g = xj , and each orbit contains k
d edges. Thus, each

(Z2)
m-coloring of ν(Pk, (Z2)

m)x
j

gives the same coloring on all k
d edges of each orbit.

This means that if d 6= 1, |ν(Pk, (Z2)
m)x

j | = |ν(Pd, (Z2)
m)|. If d = 1, then all edges of

Pk have the same coloring, which is impossible by the linear independence condition of

(Z2)
m-colorings in ν(Pk, (Z2)

m). On the other hand, for every d > 1, there are exactly

ϕ(kd ) automorphisms of the form xj , each of which divides all edges of Pk into d orbits.

Thus

(b)
k−1∑
j=0

|ν(Pk, (Z2)
m)x

j | =
∑

d>1,d|k

ϕ(
k

d
)|ν(Pd, (Z2)

m)|

At the same time, since xjy is a reflection obtained by x and y, we have

(c) |ν(Pk, (Z2)
m)x

jy| =

{
(2m − 1) · (2m − 2)

k
2 , when k is even and j is odd,

0, otherwise.

Putting (b) and (c) into (a), we obtain the formula in the theorem. �

4. Locally Standard (Z2)
m-manifolds Over ∆n1 ×∆n2

From [7], we have that RP (n1) × RP (n2) is a small cover over ∆n1 × ∆n2 . Thus,

RP (n1)×RP (n2) is a locally standard (Z2)
n-manifold over ∆n1×∆n2 with n1+n2 = n.

Similarly, we have that RP (n1)×RP (n2)×(Z2)
m−n is a locally standard (Z2)

m-manifold

over ∆n1 ×∆n2 for m > n.

To be convenient, we introduce the following marks. By F ′1, · · · , F ′n1+1 we denote all

facets of n1-simplex ∆n1 , and by F ′n1+2, · · · , F ′n1+n2+2 we denote all facets of n2-simplex
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∆n2 . Set F ′ = {Fi = F ′i ×∆n2 |1 ≤ i ≤ n1 + 1} and F ′′ = {Fi = ∆n1 × F ′i |n1 + 2 ≤ i ≤
n1 + n2 + 2}. Then F(∆n1 ×∆n2) = F ′

⋃
F ′′.

Next, we determine the number of locally standard (Z2)
m-manifolds over ∆n1 ×∆n2 up

to D-J equivalence.

Theorem 4.1 : Let DJ(∆n1 × ∆n2) denote the number of D-J equivalence classes of

locally standard (Z2)
m-manifolds over ∆n1 ×∆n2 with n1 + n2 = n. Then

DJ(∆n1 ×∆n2) = 22m − 3 · 2m+n + 22n+1 − 2m + 2n + 2m+n1+1 − 2n+n1+1

+2m+n2+1 − 2n+n2+1 + 2n1 + 2n2 − 1.

Proof : Let e1, e2, · · · , em be the standard basis of (Z2)
m, then (Z2)

m contains 2m − 1

nonzero elements (or 2m−1 colors). We choose F1, · · · , Fn1 from F ′ and Fn1+2, · · · , Fn1+n2+1

from F ′′ such that F1, · · · , Fn1 , Fn1+2, · · · , Fn1+n2+1 meet at one vertex of ∆n1 ×∆n2 .

Then

A(∆n1 ×∆n2) = {ν ∈ ν(∆n1 ×∆n2 , (Z2)
m)|ν(Fi)

= ei, 1 ≤ i ≤ n1; ν(Fi)

= ei−1, n1 + 2 ≤ i ≤ n1 + n2 + 1.

Write

A0(∆
n1 ×∆n2) = {ν ∈ A(∆n1 ×∆n2)|ν(Fn1+1) = e1 + e2 + · · ·+ en1},

A1(∆
n1 ×∆n2) = {ν ∈ A(∆n1 ×∆n2)|ν(Fn1+1) = e1 + e2 + · · ·+ en1 + ek1 + · · ·+ eki ,

where n1 + 1 ≤ k1 < · · · < ki ≤ n1 + n2 and 1 ≤ i ≤ n2},

A2(∆
n1 ×∆n2) = {ν ∈ A(∆n1 ×∆n2)|ν(Fn1+1) = et1 + · · ·+ etj + eg1 + · · ·+ egh ,

where n+ 1 ≤ t1 < · · · < tj ≤ m, 1 ≤ g1 < · · · < gh ≤ n, 1 ≤ j ≤ m−n and 0 ≤ h ≤ n}.
By the linear independence condition of (Z2)

m-colorings in ν(∆n1 × ∆n2 , (Z2)
m), we

have |A(∆n1 × ∆n2)| =
2∑
i=0
|Ai(∆n1 × ∆n2)|. Then, our argument is divided into the

following cases.

Case 1. Calculation of |A0(∆
n1 ×∆n2)|.

By the linear independence condition of (Z2)
m-colorings, we have that ν(Fn1+n2+2)

= en1+1 + · · · + en + ef1 + · · · + efl with 1 ≤ f1 < · · · < fl ≤ n1 and 0 ≤ l ≤ n1, or
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et1 + · · · + etj + eg1 + · · · + egh with n + 1 ≤ t1 < · · · < tj ≤ m, 1 ≤ g1 < · · · < gh ≤
n, 1 ≤ j ≤ m− n and 0 ≤ h ≤ n.

Thus, |A0(∆
n1 ×∆n2)| = 2m − 2n + 2n1 .

Case 2. Calculation of |A1(∆
n1 ×∆n2)|.

No matter which value of ν(Fn1+1) is chosen, by the linear independence condition of

(Z2)
m-colorings, we have ν(Fn1+n2+2) = en1+1 + · · ·+en or et1 + · · ·+etj +eg1 + · · ·+egh

with n+ 1 ≤ t1 < · · · < tj ≤ m, 1 ≤ g1 < · · · < gh ≤ n, 1 ≤ j ≤ m− n and 0 ≤ h ≤ n.

Thus, |A1(∆
n1 ×∆n2)| = (2n2 − 1) · (2m − 2n + 1).

Case 3. Calculation of |A2(∆
n1 ×∆n2)|.

Without loss of generality, suppose ν(Fn1+1) = en+1 because other cases are similar.

By the linear independence condition of (Z2)
m-colorings, we have that ν(Fn1+n2+2) =

e1 + · · ·+ en1 + en+1 + ef1 + · · ·+ efl with n1 + 1 ≤ f1 < · · · < fl ≤ n and 0 ≤ l ≤ n2−2,

en1+1 + · · · + en + el1 + · · · + elk with 1 ≤ l1 < · · · < lk ≤ n + 1, li 6= n1 + 1, · · · , n for

1 ≤ i ≤ k and 0 ≤ k ≤ n1 − 1, eh1 + · · · + ehi with 1 ≤ h1 < · · · < hi ≤ n + 1 and

n ≤ i ≤ n+ 1, or eu1 + · · ·+ eul + ev1 + · · ·+ evk with n+ 2 ≤ u1 < · · · < ul ≤ m, 1 ≤
v1 < · · · < vk ≤ n+ 1, 1 ≤ l ≤ m− n− 1 and 0 ≤ k ≤ n+ 1.

Thus, |A2(∆
n1 ×∆n2)| = (2m − 2n) · (2m − 2n+1 + 2n1+1 + 2n2 − 1).

Combining Cases 1-3, we complete the proof. �

Remark 2 : In a similar way, we have that there are 2m − 2n + 1 locally standard

(Z2)
m-manifolds over ∆n up to D-J equivalence for m ≥ n.
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