International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 21-29

LOCALLY STANDARD $(\mathbb{Z}_2)^m$ -MANIFLODS OVER POLYGONS AND PRODUCTS OF TWO SIMPLICES

YANCHANG CHEN

College of Mathematics Information Science, Henan Normal University, Xinxiang 453007, P. R. China

Abstract

In this paper, we calculate the number of equivariant homeomorphism classes of locally standard $(\mathbb{Z}_2)^m$ -manifolds over polygons for $m \geq 2$ and the number of Davis-Januszkiewicz equivalence classes of locally standard $(\mathbb{Z}_2)^m$ -manifolds over $\Delta^{n_1} \times \Delta^{n_2}$ for $m \geq n_1 + n_2$, where Δ^{n_i} is an n_i -simplex for i = 1, 2.

1. Introduction Let M^n be an *n*-dimensional closed manifold with a locally standard $(\mathbb{Z}_2)^n$ -action (see [7]) and $\pi: M^n \to X^n = M^n/(\mathbb{Z}_2)^n$ be the orbit map. Then X^n is a nice *n*-manifold with corners and the $(\mathbb{Z}_2)^n$ -action determines a characteristic function ν_{π} (also called $(\mathbb{Z}_2)^n$ -coloring) on the facets of X^n . In particular, when X^n is a simple convex polytope, M^n is a small cover over X^n and there is a standard construction to recover M^n from the characteristic function ν_{π} on X^n (see [7]). Generally, we need an additional data to recover M^n . In [10], Yu defined a general notion of locally standard $(\mathbb{Z}_2)^m$ -actions on *n*-dimensional closed manifolds for all $m \geq 1$, which is actually a

© http://www.ascent-journals.com UGC approved journal (Sl No. 48305)

Key Words : Locally standard, Equivariant homeomorphism, Davis-Januszkiewicz equivalence. 2000 AMS Subject Classification : 57S17, 57S25, 52B70.

generalization of the notion of locally standard 2-torus manifold defined in [8] where m is required to be equal to n.

This paper is motivated by the works [2], [3], [4], [5] and [9], which enumerate the number of Davis-Januszkiewicz equivalence classes and equivariant homeomorphism classes of small covers over a specific polytope. By using the ideas in the above papers, we determine the number of equivariant homeomorphism classes of locally standard $(\mathbb{Z}_2)^m$ manifolds over polygons for $m \geq 2$ (see Theorem 3.2). Moreover, we calculate the number of Davis-Januszkiewicz equivalence classes of locally standard $(\mathbb{Z}_2)^m$ -manifolds over $\Delta^{n_1} \times \Delta^{n_2}$ for $m \geq n_1 + n_2$, where Δ^{n_i} is an n_i -simplex for i = 1, 2 (see Theorem 4.1).

The paper is organized as follows. In Section 2, we review the notion of locally standard $(\mathbb{Z}_2)^m$ -actions on *n*-dimensional manifolds and basic results about locally standard $(\mathbb{Z}_2)^m$ -manifolds over *n*-dimensional simple convex polytopes. In Section 3, we determine the number of locally standard $(\mathbb{Z}_2)^m$ -manifolds over polygons up to equivariant homeomorphism. In Section 4, we calculate the number of locally standard $(\mathbb{Z}_2)^m$ manifolds over $\Delta^{n_1} \times \Delta^{n_2}$ up to Davis-Januszkiewicz equivalence.

2. Preliminaries

First, let us give the definition of locally standard $(\mathbb{Z}_2)^m$ -actions on *n*-dimensional manifolds for any $m \ge 1$ (see [10]). Let $g = (g_1, \cdots, g_m)$ be an arbitrary element of $(\mathbb{Z}_2)^m$.

(1) If $m \leq n$, the standard $(\mathbb{Z}_2)^m$ -action on \mathbb{R}^n is:

$$(x_1, \cdots, x_n) \longmapsto ((-1)^{g_1} x_1, \cdots, (-1)^{g_m} x_m, x_{m+1}, \cdots, x_n),$$

whose orbit space is $\mathbb{R}^{n,m}_+ := \{(x_1, \cdots, x_n) | x_i \ge 0 \text{ for } 1 \le i \le m\}.$

(2) For m > n, the standard $(\mathbb{Z}_2)^m$ -action on $\mathbb{R}^n \times (\mathbb{Z}_2)^{m-n}$ is:

$$((x_1, \cdots, x_n), (h_1, \cdots, h_{m-n})) \longmapsto$$
$$(((-1)^{g_1} x_1, \cdots, (-1)^{g_n} x_n), (g_{n+1} + h_1, \cdots, g_m + h_{m-n})),$$

whose orbit space is $\mathbb{R}^{n,n}_+$.

Suppose that $(\mathbb{Z}_2)^m$ acts effectively on an *n*-dimensional closed manifold M^n . A local isomorphism of M^n with the standard action consists of:

- (1) a group automorphism $\sigma : (\mathbb{Z}_2)^m \to (\mathbb{Z}_2)^m$;
- (2) $(\mathbb{Z}_2)^m$ -stable open sets V in M^n and U in \mathbb{R}^n (if $m \leq n$) or $\mathbb{R}^n \times (\mathbb{Z}_2)^{m-n}$ (if $m \geq n$);
- (3) a σ -equivariant homeomorphism $f: V \to U$, i.e. $f(g \cdot v) = \sigma(g) \cdot f(v)$ for any $g \in (\mathbb{Z}_2)^m$ and $v \in V$.

 M^n is locally isomorphic to the standard action if each point of M^n is in the domain of some local isomorphism. Under this condition, we say the $(\mathbb{Z}_2)^m$ -action on M^n is locally standard and say that M^n is a locally standard $(\mathbb{Z}_2)^m$ -manifold over $M^n/(\mathbb{Z}_2)^m$. Now, suppose that M^n is a locally standard $(\mathbb{Z}_2)^m$ -manifold over $M^n/(\mathbb{Z}_2)^m$. Then the orbit space $X^n = M^n/(\mathbb{Z}_2)^m$ is a nice manifold with corners (see [6] for the details of a nice manifold with corners). Suppose $\pi : M^n \to X^n$ is the orbit map. Let the set of facets (faces of codimension one) of X^n be $\mathcal{F}(X^n) = \{F_1, \dots, F_\ell\}$. The characteristic function $((\mathbb{Z}_2)^m$ -coloring) $\nu_{\pi} : \mathcal{F}(X^n) \to (\mathbb{Z}_2)^m$ is defined as follows:

 $\nu_{\pi}(F_i)$ = the element of $(\mathbb{Z}_2)^m$ that fixes $\pi^{-1}(F_i)$ pointwise.

We may find that whenever $F_{j_1} \cap \cdots \cap F_{j_s} \neq \emptyset$, $\{\nu_{\pi}(F_{j_1}), \cdots, \nu_{\pi}(F_{j_s})\}$ must be linearly independent vectors in $(\mathbb{Z}_2)^m$ over \mathbb{Z}_2 .

An *n*-dimensional convex polytope is said to be simple, if exactly *n* facets meet at each of its vertices (see [11]). An *n*-dimensional simple convex polytope is obviously a nice *n*-manifold with corners. If m < n, the dimension of any face of the orbit space X^n is at least n - m. So X^n must not be a simple convex polytope when m < n. In the rest of the paper, suppose $m \ge n$ and that X^n is an *n*-dimensional simple convex polytope. In fact, a locally standard $(\mathbb{Z}_2)^n$ -manifold over an *n*-dimensional simple convex polytope X^n is just a small cover over X^n .

In [10], Yu gave a reconstruction process of M^n by using the characteristic function ν_{π} and the product bundle $X^n \times (\mathbb{Z}_2)^m$ over X^n up to equivariant homeomorphism. Following Davis and Januszkiewicz [7], we say that two locally standard $(\mathbb{Z}_2)^m$ -manifolds M^n and N^n over X^n are Davis-Januszkiewicz equivalent (or simply D-J equivalent) if there is a homeomorphism $f: M^n \to N^n$ together with an element $\sigma \in \mathrm{GL}(m, \mathbb{Z}_2)$ such that

(1) $f(g \cdot x) = \sigma(g) \cdot f(x)$ for all $g \in (\mathbb{Z}_2)^m$ and $x \in M^n$, and

(2) f induces the identity on the orbit space X^n .

Two locally standard $(\mathbb{Z}_2)^m$ -manifolds M^n and N^n over X^n are equivariantly homeomorphic if there is a homeomorphism $f: M^n \to N^n$ such that $f(g \cdot x) = g \cdot f(x)$ for all $g \in (\mathbb{Z}_2)^m$ and $x \in M^n$. Let $\nu(X^n, (\mathbb{Z}_2)^m) := \{\nu : \mathcal{F}(X^n) \to (\mathbb{Z}_2)^m \mid \nu(F_{j_1}), \cdots, \nu(F_{j_s})$ are linearly independent vectors in $(\mathbb{Z}_2)^m$ whenever $F_{j_1} \cap \cdots \cap F_{j_s} \neq \emptyset\}$.

Then we have

Theorem 2.1 ([10]) : The set of D-J equivalence classes of locally standard $(\mathbb{Z}_2)^m$ manifolds over X^n bijectively corresponds to the coset $\nu(X^n, (\mathbb{Z}_2)^m)/GL(m, \mathbb{Z}_2)$, where $GL(m, \mathbb{Z}_2)$ acts on $\nu(X^n, (\mathbb{Z}_2)^m)$ via automorphisms of the coefficient $(\mathbb{Z}_2)^m$.

Remark 1: Without loss of generality, we assume that F_1, \dots, F_n of $\mathcal{F}(X^n)$ meet at one vertex p of X^n . Let e_1, \dots, e_m be the standard basis of $(\mathbb{Z}_2)^m$. Write $A(X^n) =$ $\{\nu \in \nu(X^n, (\mathbb{Z}_2)^m) | \nu(F_i) = e_i, i = 1, \dots, n\}$. In fact, $A(X^n)$ is the orbit space of $\nu(X^n, (\mathbb{Z}_2)^m)$ under the action of $\operatorname{GL}(m, \mathbb{Z}_2)$. By Theorem 2.1, the order $|A(X^n)|$ of $A(X^n)$ is the number of D-J equivalence classes in locally standard $(\mathbb{Z}_2)^m$ -manifolds over X^n .

Let X^n be a simple convex polytope of dimension n. All faces of X^n form a poset (i.e., a partially ordered set by inclusion). An automorphism of $\mathcal{F}(X^n)$ is a bijection from $\mathcal{F}(X^n)$ to itself which preserves the poset structure of all faces of X^n , and by $Aut(\mathcal{F}(X^n))$ we denote the group of automorphisms of $\mathcal{F}(X^n)$. One can define the right action of $Aut(\mathcal{F}(X^n))$ on $\nu(X^n, (\mathbb{Z}_2)^m)$ by $\nu \times h \longmapsto \nu \circ h$, where $\nu \in \nu(X^n, (\mathbb{Z}_2)^m)$ and $h \in Aut(\mathcal{F}(X^n))$.

Theorem 2.2: The set of equivariant homeomorphism classes of all *n*-dimensional locally standard $(\mathbb{Z}_2)^m$ -manifolds over X^n bijectively corresponds to the coset $\nu(X^n, (\mathbb{Z}_2)^m)/Aut(\mathcal{F}(X^n)).$

3. Locally Standard $(\mathbb{Z}_2)^m$ -manifolds Over Polygons

From [7], we know that the connected sum Q^2 of $k - 2 \mathbb{R}P(2)'s$ is a small cover over k-gon P_k , where $\mathbb{R}P(2)$ is the 2-dimensional real projective space. So Q^2 is a locally standard $(\mathbb{Z}_2)^2$ -manifold over P_k . We can easily extend locally standard $(\mathbb{Z}_2)^2$ -action on Q^2 to locally standard $(\mathbb{Z}_2)^m$ -action on $Q^2 \times (\mathbb{Z}_2)^{m-2}$ with the orbit space unchanged for m > 2. Thus, $Q^2 \times (\mathbb{Z}_2)^{m-2}$ is a locally standard $(\mathbb{Z}_2)^m$ -manifold over P_k for m > 2. A coloring on k-gon P_k (with $2^m - 1$ colors) means to color edges of P_k in such a way

that any adjacent edges have different colors.

Lemma 3.1 : $|\nu(P_k, (\mathbb{Z}_2)^m)| = (2^m - 2)^k + (-1)^k (2^m - 2).$

Proof: Let S(k) be a segment with k + 1 vertices including the endpoints, so S(k) has k segments. The number of coloring segments of S(k) with $2^m - 1$ colors in such a way that any adjacent edges have different colors is $(2^m - 1) \cdot (2^m - 2)^{k-1}$. If the two end segments have different colors, then it produces a coloring on P_k by gluing the end points of S(k). If the two end segments have the same color, then it produces a coloring on P_{k-1} by gluing the end segments of S(k). Thus, we have that

(a) $|\nu(P_k, (\mathbb{Z}_2)^m)| + |\nu(P_{k-1}, (\mathbb{Z}_2)^m)| = (2^m - 1) \cdot (2^m - 2)^{k-1}$. It follows that

$$|\nu(P_k, (\mathbb{Z}_2)^m)| - (2^m - 2)|\nu(P_{k-1}, (\mathbb{Z}_2)^m)|$$

= $-(|\nu(P_{k-1}, (\mathbb{Z}_2)^m)| - (2^m - 2)|\nu(P_{k-2}, (\mathbb{Z}_2)^m)|)$
= \cdots
= $(-1)^{k-3}(|\nu(P_3, (\mathbb{Z}_2)^m)| - (2^m - 2)|\nu(P_2, (\mathbb{Z}_2)^m)|)$

and a observation shows that $|\nu(P_3, (\mathbb{Z}_2)^m)| = (2^m - 1) \cdot (2^m - 2) \cdot (2^m - 3)$ and $|\nu(P_2, (\mathbb{Z}_2)^m)| = (2^m - 1) \cdot (2^m - 2)$, so

$$|\nu(P_k, (\mathbb{Z}_2)^m)| - (2^m - 2)|\nu(P_{k-1}, (\mathbb{Z}_2)^m)| = (-1)^k (2^m - 1) \cdot (2^m - 2).$$

The lemma then follows from (a) and (b).

By a_1, \dots, a_k we denote all edges of k-gon P_k in their general order. Let x, y be two automorphisms of $Aut(\mathcal{F}(P_k))$ with the following properties respectively:

(2)
$$y(a_i) = a_{k+1-i} (i = 1, 2, \cdots, k).$$

Then, all automorphisms of $Aut(\mathcal{F}(P_k))$ can be written in a simple form as follows:

 x^j or $x^j y$, where $j \in \mathbb{Z}_k$.

Theorem 3.2: Let φ denote the Euler's totient function, that is, $\varphi(1) = 1$ and $\varphi(N)$ for a positive integer $N(N \ge 2)$ is the number of positive integers both less than N and coprime to N. Let $E(P_k)$ denote the number of equivariant homeomorphism classes of locally standard $(\mathbb{Z}_2)^m$ -manifolds over P_k . Then

$$E(P_k) = \frac{1}{2k} \{ \sum_{d>1,d|k} \varphi(\frac{k}{d}) |\nu(P_d, (\mathbb{Z}_2)^m)| + \frac{1+(-1)^k}{2} \cdot (2^m - 1) \cdot (2^m - 2)^{\frac{k}{2}} \cdot \frac{k}{2} \}.$$

Proof: The famous Burnside Lemma (see [1]) says that if G is a finite group acting on a set X, then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

where $X^g = \{x \in X | gx = x\}$. From Theorem 2.2 and Burnside Lemma, we have that

(a)
$$E(P_k) = \frac{1}{2k} \sum_{j=0}^{k-1} (|\nu(P_k, (\mathbb{Z}_2)^m)^{x^j}| + |\nu(P_k, (\mathbb{Z}_2)^m)^{x^j y}|)$$

Let d be the greatest common divisor of j and k. Then all edges of P_k are divided into d orbits under the action of $g = x^j$, and each orbit contains $\frac{k}{d}$ edges. Thus, each $(\mathbb{Z}_2)^m$ -coloring of $\nu(P_k, (\mathbb{Z}_2)^m)^{x^j}$ gives the same coloring on all $\frac{k}{d}$ edges of each orbit. This means that if $d \neq 1$, $|\nu(P_k, (\mathbb{Z}_2)^m)^{x^j}| = |\nu(P_d, (\mathbb{Z}_2)^m)|$. If d = 1, then all edges of P_k have the same coloring, which is impossible by the linear independence condition of $(\mathbb{Z}_2)^m$ -colorings in $\nu(P_k, (\mathbb{Z}_2)^m)$. On the other hand, for every d > 1, there are exactly $\varphi(\frac{k}{d})$ automorphisms of the form x^j , each of which divides all edges of P_k into d orbits. Thus

(b)
$$\sum_{j=0}^{k-1} |\nu(P_k, (\mathbb{Z}_2)^m)^{x^j}| = \sum_{d>1, d|k} \varphi(\frac{k}{d}) |\nu(P_d, (\mathbb{Z}_2)^m)|$$

At the same time, since $x^{j}y$ is a reflection obtained by x and y, we have

(c)
$$|\nu(P_k, (\mathbb{Z}_2)^m)^{x^j y}| = \begin{cases} (2^m - 1) \cdot (2^m - 2)^{\frac{k}{2}}, & \text{when } k \text{ is even and } j \text{ is odd,} \\ 0, & \text{otherwise.} \end{cases}$$

Putting (b) and (c) into (a), we obtain the formula in the theorem.

4. Locally Standard $(\mathbb{Z}_2)^m$ -manifolds Over $\Delta^{n_1} \times \Delta^{n_2}$

From [7], we have that $\mathbb{R}P(n_1) \times \mathbb{R}P(n_2)$ is a small cover over $\Delta^{n_1} \times \Delta^{n_2}$. Thus, $\mathbb{R}P(n_1) \times \mathbb{R}P(n_2)$ is a locally standard $(\mathbb{Z}_2)^n$ -manifold over $\Delta^{n_1} \times \Delta^{n_2}$ with $n_1 + n_2 = n$. Similarly, we have that $\mathbb{R}P(n_1) \times \mathbb{R}P(n_2) \times (\mathbb{Z}_2)^{m-n}$ is a locally standard $(\mathbb{Z}_2)^m$ -manifold over $\Delta^{n_1} \times \Delta^{n_2}$ for m > n.

To be convenient, we introduce the following marks. By F'_1, \dots, F'_{n_1+1} we denote all facets of n_1 -simplex Δ^{n_1} , and by $F'_{n_1+2}, \dots, F'_{n_1+n_2+2}$ we denote all facets of n_2 -simplex

 Δ^{n_2} . Set $\mathcal{F}' = \{F_i = F'_i \times \Delta^{n_2} | 1 \le i \le n_1 + 1\}$ and $\mathcal{F}'' = \{F_i = \Delta^{n_1} \times F'_i | n_1 + 2 \le i \le n_1 + n_2 + 2\}$. Then $\mathcal{F}(\Delta^{n_1} \times \Delta^{n_2}) = \mathcal{F}' \bigcup \mathcal{F}''$.

Next, we determine the number of locally standard $(\mathbb{Z}_2)^m$ -manifolds over $\Delta^{n_1} \times \Delta^{n_2}$ up to D-J equivalence.

Theorem 4.1 : Let $DJ(\Delta^{n_1} \times \Delta^{n_2})$ denote the number of D-J equivalence classes of locally standard $(\mathbb{Z}_2)^m$ -manifolds over $\Delta^{n_1} \times \Delta^{n_2}$ with $n_1 + n_2 = n$. Then

$$DJ(\Delta^{n_1} \times \Delta^{n_2}) = 2^{2m} - 3 \cdot 2^{m+n} + 2^{2n+1} - 2^m + 2^n + 2^{m+n_1+1} - 2^{n+n_1+1} + 2^{m+n_2+1} - 2^{n+n_2+1} + 2^{n_1} + 2^{n_2} - 1.$$

Proof: Let e_1, e_2, \dots, e_m be the standard basis of $(\mathbb{Z}_2)^m$, then $(\mathbb{Z}_2)^m$ contains $2^m - 1$ nonzero elements (or $2^m - 1$ colors). We choose F_1, \dots, F_{n_1} from \mathcal{F}' and $F_{n_1+2}, \dots, F_{n_1+n_2+1}$ from \mathcal{F}'' such that $F_1, \dots, F_{n_1}, F_{n_1+2}, \dots, F_{n_1+n_2+1}$ meet at one vertex of $\Delta^{n_1} \times \Delta^{n_2}$. Then

$$A(\Delta^{n_1} \times \Delta^{n_2}) = \{ \nu \in \nu(\Delta^{n_1} \times \Delta^{n_2}, (\mathbb{Z}_2)^m) | \nu(F_i) \}$$

= $e_i, 1 \le i \le n_1; \nu(F_i)$
= $e_{i-1}, n_1 + 2 \le i \le n_1 + n_2 + 1.$

Write

$$A_0(\Delta^{n_1} \times \Delta^{n_2}) = \{ \nu \in A(\Delta^{n_1} \times \Delta^{n_2}) | \nu(F_{n_1+1}) = e_1 + e_2 + \dots + e_{n_1} \},$$

$$A_1(\Delta^{n_1} \times \Delta^{n_2}) = \{ \nu \in A(\Delta^{n_1} \times \Delta^{n_2}) | \nu(F_{n_1+1}) = e_1 + e_2 + \dots + e_{n_1} + e_{k_1} + \dots + e_{k_i},$$

where $n_1 + 1 \le k_1 < \dots < k_i \le n_1 + n_2$ and $1 \le i \le n_2 \},$

$$A_2(\Delta^{n_1} \times \Delta^{n_2}) = \{ \nu \in A(\Delta^{n_1} \times \Delta^{n_2}) | \nu(F_{n_1+1}) = e_{t_1} + \dots + e_{t_j} + e_{g_1} + \dots + e_{g_h},$$

where $n+1 \leq t_1 < \cdots < t_j \leq m, 1 \leq g_1 < \cdots < g_h \leq n, 1 \leq j \leq m-n$ and $0 \leq h \leq n$ }. By the linear independence condition of $(\mathbb{Z}_2)^m$ -colorings in $\nu(\Delta_{n_1} \times \Delta_{n_2}, (\mathbb{Z}_2)^m)$, we have $|A(\Delta^{n_1} \times \Delta^{n_2})| = \sum_{i=0}^2 |A_i(\Delta^{n_1} \times \Delta^{n_2})|$. Then, our argument is divided into the following cases.

Case 1. Calculation of $|A_0(\Delta^{n_1} \times \Delta^{n_2})|$.

By the linear independence condition of $(\mathbb{Z}_2)^m$ -colorings, we have that $\nu(F_{n_1+n_2+2})$ = $e_{n_1+1} + \cdots + e_n + e_{f_1} + \cdots + e_{f_l}$ with $1 \leq f_1 < \cdots < f_l \leq n_1$ and $0 \leq l \leq n_1$, or $e_{t_1} + \dots + e_{t_j} + e_{g_1} + \dots + e_{g_h}$ with $n + 1 \le t_1 < \dots < t_j \le m, 1 \le g_1 < \dots < g_h \le n, 1 \le j \le m - n$ and $0 \le h \le n$.

Thus, $|A_0(\Delta^{n_1} \times \Delta^{n_2})| = 2^m - 2^n + 2^{n_1}$.

Case 2. Calculation of $|A_1(\Delta^{n_1} \times \Delta^{n_2})|$.

No matter which value of $\nu(F_{n_1+1})$ is chosen, by the linear independence condition of $(\mathbb{Z}_2)^m$ -colorings, we have $\nu(F_{n_1+n_2+2}) = e_{n_1+1} + \dots + e_n$ or $e_{t_1} + \dots + e_{t_j} + e_{g_1} + \dots + e_{g_h}$ with $n+1 \leq t_1 < \dots < t_j \leq m, 1 \leq g_1 < \dots < g_h \leq n, 1 \leq j \leq m-n$ and $0 \leq h \leq n$. Thus, $|A_1(\Delta^{n_1} \times \Delta^{n_2})| = (2^{n_2} - 1) \cdot (2^m - 2^n + 1)$.

Case 3. Calculation of $|A_2(\Delta^{n_1} \times \Delta^{n_2})|$.

Without loss of generality, suppose $\nu(F_{n_1+1}) = e_{n+1}$ because other cases are similar. By the linear independence condition of $(\mathbb{Z}_2)^m$ -colorings, we have that $\nu(F_{n_1+n_2+2}) = e_1 + \dots + e_{n_1} + e_{n+1} + e_{f_1} + \dots + e_{f_l}$ with $n_1 + 1 \leq f_1 < \dots < f_l \leq n$ and $0 \leq l \leq n_2 - 2$, $e_{n_1+1} + \dots + e_n + e_{l_1} + \dots + e_{l_k}$ with $1 \leq l_1 < \dots < l_k \leq n+1, l_i \neq n_1 + 1, \dots, n$ for $1 \leq i \leq k$ and $0 \leq k \leq n_1 - 1, e_{h_1} + \dots + e_{h_i}$ with $1 \leq h_1 < \dots < h_i \leq n+1$ and $n \leq i \leq n+1$, or $e_{u_1} + \dots + e_{u_l} + e_{v_1} + \dots + e_{v_k}$ with $n+2 \leq u_1 < \dots < u_l \leq m, 1 \leq$ $v_1 < \dots < v_k \leq n+1, 1 \leq l \leq m-n-1$ and $0 \leq k \leq n+1$. Thus, $|A_2(\Delta^{n_1} \times \Delta^{n_2})| = (2^m - 2^n) \cdot (2^m - 2^{n+1} + 2^{n_1+1} + 2^{n_2} - 1)$. Combining Cases 1-3, we complete the proof.

Remark 2: In a similar way, we have that there are $2^m - 2^n + 1$ locally standard $(\mathbb{Z}_2)^m$ -manifolds over Δ^n up to D-J equivalence for $m \ge n$.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 11201126) and Key Scientific Research Program in Universities of Henan Province (No. 18B110009).

References

- Alperin J. L. and Bell R. B., Groups and Representations, Graduate Texts in Mathematics, Vol. 162., Springer-Verlag, Berlin, (1995).
- [2] Cai M., Chen X. and Lü Z., Small covers over prisms, Topology Appl, 154(11) (2007), 2228-2234.
- [3] Chen Y. and Wang Y., Orientable small covers over products of a prism with a simplex, An. St. Univ. Ovidius Constanta, Ser. Mat.19(3) (2011), 71-84.
- [4] Choi S., The number of small covers over cubes, Algebr. Geom. Topol., 8(4) (2008), 2391-2399.
- [5] Choi S., The number of orientable small covers over cubes, Proc. Japan Acad. Ser. A Math. Sci., 86(6) (2010), 97-100.
- [6] Davis M. W., Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math., 117(2) (1983), 293-324.
- [7] Davis M. W. and Januszkiewicz T., Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 62(2) (1991), 417-451.
- [8] Lü Z. and Masuda M., Equivariant classification of 2-torus manifolds, Colloq. Math., 115(2) (2009), 171-188.
- [9] Wang Y. and Chen Y., Small covers over products of a polygon with a simplex, Turkish J. Math., 36(1) (2012), 161-172.
- [10] Yu L., On the constructions of free and locally standard Z₂-torus actions on manifolds, Osaka J. Math., 49(1) (2012), 167-193.
- [11] Ziegler G. M., Lectures on Polytopes, Graduate Texts in Math., Springer-Verlag, Berlin, (1994).