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Abstract

Transmission of internal gravity waves is investigated in the stratified regions for a
conducting rotating fluid. We group the wave solution as upward and downward
propagating waves using group velocity and energy approaches and test the wave
solution in the different density barrier regions. The analytic solutions are derived
for the weakly stratified rotating conducting waves and are analysed in the differ-
ent density barrier regions for the evanescence of the waves in each region with
varying density stratification. The transmission of the waves in the mixed region
bounded by the discontinuities in the density profile is more compared to the region
of uniform density due to the linear resonance of waves in the mixing region and
shows that when the regions are weakly stratified the transmission is more other-
wise waves strongly reflect from the weakly stratified region. This paper shows that
the transmission of internal gravity waves is in the horizontal region along the fluid
lines rather than the vertical direction and the reduction in the transmission of the
waves is due to the conducting and rotating properties of the fluid along with the
weakly density stratification.
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1. Introduction

Waves are important solutions of the atmospheric system. The studies of the ducting

of gravity waves motions in the atmosphere and oceans was first considered by Eckart

[1] arising from the regions of thermal ducting(layers of increased static stability, N2
0 ).

It is generally accepted that convection in the troposphere generates gravity waves that

propagate into the stratosphere, mesosphere and thermosphere and dynamical states

of theses regions [2]. However, it is not known exactly how this occurs, what types

of waves are generated. Eckart’s resonences were theoretically derived by Fritts and

Yuan[3]. Internal gravity waves in the upper atmosphere also play an important part in

the production of certain ionospheric phenomena [4]. A full understanding of their role

will depend in part on an understanding of the propagation conditions met at all levels

in the atmosphere, and more specifically, of the part played by reflection and ducting

[5].

The studies of gravity wave ducting in the ocean, the laboratory and the atmosphere

have revealed that the formation of ducting of gravity wave activity to be important

at smaller scales as well [3]. Internal gravity waves transport energy and momentum in

density-stratified fluids on relatively fast time scales. These waves are responsible for a

variety of processes in the mesosphere and lower thermosphere: generation of turbulence,

formation of general circulation pattern of the atmosphere, deposition of net momentum,

eddy conduction of heat, mixing of atmospheric constituents, fluctuation in atmospheric

drag, and nonlinear interaction with tidal/planetary waves leading to variability of

planetaryscale motions, momentum and energy transfer from the troposphere to the

middle and upper atmosphere[22]. Perhaps most important is their role in determining

the mean flow of the atmosphere.

Evanescence of wave in a certain region can also cause wave ducting. Ducting of gravity

wave activity is likely to be a common occurrence in the atmosphere and the oceans and

may provide a means of transporting vertically the energy and momentum associated

with wave motions [3, 4]. Strong density and wind gradients or a boundary such as

earths surface can trap gravity waves [5]. This phenomenon is called gravity wave

ducting in which the majority of wave energy resides. The variation in the buoyancy

frequency causes a natural filtering mechanism for gravity waves [8]. The ray theory[12]

also predicts that the waves reflect from a level where the wave frequency matches the
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buoyancy frequency, N .

The solar interior also has been recognized as a potential source region for propagating

gravity waves. Earlier, it has been thought that low-frequency fluid motions near the

base of the convection zone can generate internal gravity waves that are capable of

propagating into the radiative interior of the Sun. Interest in such waves has been

renewed of late by suggestions that the angular momentum transport by them can

account for the uniform rotation of the radiative interior, as inferred from helioseismic

measurements [6].

Sutherland and Yewchuk [7] have derived an analytic theory for internal gravity wave

tunnelling through a weakly stratified fluid. They have obtained the transmission co-

efficient of internal waves crossing a weakly stratified region. This theory provides

quantitative predictions of partial reflection and transmission of internal waves incident

upon a weakly stratified layer.

This paper provides an analytic prediction for the transmission coefficient of internal

Alfvéen -gravity waves crossing a region in which N2 is reduced (weakly stratified re-

gion) for conducting and rotating fluid. The transmission co-efficient of an internal

Alfvéen-gravity wave crossing over a barrier is computed. The effect of the rotation and

magnetic field on the transmission co-efficient is studied.

2. Mathematical Formulation

We consider three dimensional motion of an electrically conducting rotating inviscid fluid

with variation being in the x and z directions (i.e. horizontal and vertical directions

respectively). The fluid is stratified and the stratification of the mean flow may then be

described in terms of a single parameter which vary with the vertical height z, i.e. the

Brunt-väisälä frequency defined by N(z) = −
(
g
ρ0
dρ0
dz

) 1
2

= (gβ)
1
2 where β =

(
1
ρ0
dρ0
dz

)
.

The density ρ of the fluid is considered to be uniform in the first two cases but the

mixed region is bounded by discontinuous density profile. Initially the fluid is assumed

to be in the state of rest. Since we consider atmospheric and astrophysical phenom-

ena, although the flow velocities are rather small, the Reynolds number and Magnetic

Reynolds number are quite large and hence an inviscid perfectly conducting flow model

would appear to be a reasonable one. The rotation of the earth may not be neglected

which is one of contributing factor. The perturbation of magnetic field from the hori-
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zontal uniform basic magnetic field, is considered to be very small which is of critical

importance to the present analysis. It can be shown that under these assumptions the

vertical disturbance velocity ω̂ satisfies the following linearized equation:

d2ω̂

dz2
+ α2

(
N2

ω2−k2A2 − 1
)

(
1− Ω2ω2

ω4−k4A4

) ω̂ = 0. (1)

Here, the stratification of the mean flow is described in terms of a single parameter

which may vary with z, the Brunt-väisälä frequency N , Ω

is the rotational parameter and the magnetic field is described by another parameter

A, which is the Alfvéen velocity defined by A =
(
µH2

0
ρ0

) 1
2

and α = (k2 + l2)
1
2 .

We assume the three-dimensional transient disturbance produced by temporary extra-

neous forces which is horizontally and temporally periodic in the form

ψ = ψ̂(z) exp[i(kz + ly − ωt)], (2)

where k(> 0) is the horizontal wave number, ω(≤ N0) is the wave frequency and ω/k is

the phase velocity. The solution of the equation (1) is given by

ω̂ = A1e
+iηz +B1e

−iηz (3)

where η = −α
(

N2

ω2−k2A2 − 1
) 1

2
/
(

1− 4Ω2ω2

ω4−k4A4

) 1
2

are arbitrary constants. The vertical

wave number for |z| > L
2 , it is defined to be negative so that the incident wave and

transmitted wave propagate upward. We seek to interpret these solutions as upward or

downward propagating waves [14] in the following section which plays a significant role

in understanding the transmission and reflection of waves at weakly stratified regions

that we have considered in this paper.

2.1 Upward and Downward Propagating Waves

In a medium of which the properties vary substantially over a wavelength it is difficult

to specify exactly which part of an oscillatory motion corresponds to a wave travelling

in the upward direction and which one in the opposite direction there is a continuous

interchange between the two. In a uniform medium, on the other hand, precise and

physically important identifications may be made. We must be quite clear about the

interpretation of this in a uniform medium as considered in this paper.
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It is clear from governing wave equation every wave with horizontal wave number k and

phase-velocity c has a vertical structure of the from (4) For the sake of definiteness we

settle the branch for η by requiring that

ck > 0, ηk > 0 (4)

η = −α

(
N2

ω2−k2A2 − 1
) 1

2

(
1− 4Ω2ω2

ω4−k4A4

) 1
2

. (5)

This implies that if

1� N2

ω2 − k2A2
, 1� 4Ω2ω2

ω4 − k4A4
then η ≈

(
−Nα

(ω2 − k2A2)

) 1
2

if

1� N2

ω2 − k2A2
,

4Ω2ω2

ω4 − k4A4
� 1 then η ≈ α(ω4 − k4A4)

1
2

2Ωω

η =


Nα

(ω2−k2A2)
1
2

if ω2 > k2A2

− iNα

(ω2−k2A2)
1
2

if ω2 > k2A2
(6)

η =


α(ω4−k4A4)

1
2

2Ωω if ω2 > k2A2

iα(ω4−k4A4)
1
2

2Ωω if ω2 < k2A2

(7)

with the proper definition of branches of η and its expression under extreme situations

described above it is possible to interpret which solution in (3) represents an upward or

downward propagating wave. If ω>k2A2 then η is positive, so that the phase front move

upwards and if ω2 < k2A2 then η is imaginary. Thus the first solution in (2) describes

a wave with a upward component of velocity for ω2 > k2A2. However, the influence

of such a wave propagate upwards and so it is called an upward traveling wave. The

complete spatial distribution of velocity associated with the first solution is ω̂ = A1e
+iηz

represents a plane wave with phase front ηz−kct = constant. For the range of frequency

ω such that k and η are real, ω2 must be greater than k2A2. The vertical component

of the phase velocity is ck = ω
η . The phase fronts are always perpendicular to the phase

velocity. Therefore the first solution describes a wave with a downward component of
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phase velocity, so such a wave propagates upwards and likewise the second solution.

ω̂ = B1e
−iηz be interpreted as downward traveling wave. The significance of this inter-

pretation can be looked at in the following two ways.

(i) Group Velocity Approach : The dispersion relation which relates wave number

k and the frequency ω can be written as

ω = ±

√
4η2ω2+α2

η2+α2 ±
√

4η2ω2+α2

η2+α2 + 4(k4A4)(η2+α2)+(α2N2k2A2)
η2+α2

√
2

. (8)

According to (6) we must take the minus sign when η and (ω2− k2A2) are positive and

the plus sign when they are negative. In either case, for the first solution in (2), ∂ω
∂η

is always positive, and hence corresponds to an upward component of group velocity.

Thus the first solution in (3) represents an upward-propagating wave and similarly the

second solution represents a downward-propagating wave.

(ii) Energy Approach : A second view of understanding upward and downward-

propagating waves comes from energy consideration. The total mean rate of working by

the fluid below any level on the fluid above is pw, where p is the disturbance pressure

and an over bar denotes an average over a horizontal wave length or over a period. We

can show that

pω =
iρ(ω4 − k4A4)− (4Ω2ω2)

ωα2(ω2 + k2A2)

dω̂

dz
, ω̂, (9)

where ρ is the mean density, dω̂
dz , ω̂ =

(
dω̂
dz , ω̂

∗) [14]. Using (9) it can be shown that the

total mean rate of working is given by

pw =
ρ(ω4 − k4A4)− (4Ω2ω2)

ωα2(ω2 + k2A2)
A2
qη/ (10)

We find from (10) that the pw is positive for the solution ŵ = Ae+iηz and thus wave

energy is flowing upwards, so it is upward propagating wave and for the second solution

i.e. ω̂ = Be−iηz, pw is negative and wave energy is flowing downwards and hence it is

downward propagating wave.
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Transmission across the barriers is derived in the following subsections.

3. Transmission Across N2-barrrier 1

In this case we have a uniform density conducting fluid of finite depth L bounded on

either side by a stratified conducting fluids extending to infinity. We assume

N2 =


N2

0 |z| > L
2

0 |z| ≤ L
2

(11)

which is N2-barrrier1 of depth L as shown in figure 1. With this the solution of (5)

takes the form

ω̂ =


A3e

iηz |z| > L
2

A2e
z
δ +B2e

−z
δ

−L
2 ≤ z ≤

L
2

A1e
iηz +B2e

−iηz |z| < L
2

(12)

where η = −α
(

N2

ω2−k2A2 − 1
) 1

2
/
(

1− 4Ω2ω2

ω4−k4A4

) 1
2
, A =

√
µH2

0
ρ0

and δ = 1
k , k(> 0) is

the well defined horizontal wave number and ω(≤ N) is the wave frequency. As a

wave packet with amplitude A1 reaches the first interface at z = ±L/2, some part
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of the wave is transmitted and the rest is reflected, the amplitudes being A2 and A1

respectively and the amplitudes being A3 and B2 respectively. Thereafter the waves

are only transmitted in the stratified region (|z| > L
2 ). Since η represents the vertical

wave number for |z| > L
2 it is defined to be negative so that the incident wave (with

amplitude A1)and transmitted wave(with amplitude A3) propagate upward. Our aim

here is to determine the transmission coefficient Tm = |A3/A1|2, which represents the

fraction of energy transported across N2-barrier 1 and is given by

Tm =

[
1 +

(1 + η2δ2)2

4η2δ2
sinh2

(
L

δ

)]−1

. (13)

In limit the Ω→ 0 (conducting and non-rotating case)

Tm =

[
1 +

(1 + λ2δ2)2

4λ2δ2
sinh2

(
L

δ

)]−1

. (14)

In limit the Ω→ 0 and A→ 0 (non-conducting and non-rotating case)

Tm =

[
1 +

(1 + γ2δ2)2

4γ2δ2
sinh2

(
L

δ

)]−1

. (15)

The transmission coefficient has been plotted for different values of frequency, N2-

barrrier width and Alfvéen velocity as plotted below.
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4. Transmission Across N2-barrrier2

In the second case we assume a uniform density fluid of finite depth L is bounded on

either side by a stratified fluids extending either side to infinity given by,

N2 =


N2

0 |z| > L
2

N2
1 |z| ≤ L

2

(16)

where N1 ≤ ω ≤ N0. In this case the fluid in the lower is initially at rest. The fluid

in the upper and lower region is uniformly stratified along with the parameter N2
0 and

middle layer with N2
1 . Solution obtained in this case is given by:

ω̂ =


A3e

iηz |z| > L
2

A2e
ξz +B2e

−ξz −L
2 ≤ z ≤

L
2

A1e
iηz +B2e

−iηz |z| < L
2

(17)

where η = −α
(

N2
0

ω2−k2A2 − 1
) 1

2
/
(

1− 4Ω2ω2

ω4−k4A4

) 1
2
, ξ = α

(
1− N2

1
ω2−k2A2

) 1
2
/
(

1− 4Ω2ω2

ω4−k4A4

) 1
2
,

k = 1
δ ψ̂(z), dψ̂dz are continuous across the interface and hence velocity and pressure.The

transmission coefficient computed for case2 is given by

Tmb =

[
1 +

(η2 + ξ2)

(4ξ2η2)
sinh2(ξL)

]−1

. (18)

In the limit N1 → 0 equation (18) reduces the transmission coefficient obtained in the

first case and in the limit Ω → 0 and A → 0 to [7] case for non-conducting fluids

respectively.
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5. Transmission Across Locally Mixed Region

In this case, ρb(z) is assumed to vary continuously, even though its slope is discontinuous

at at z = ±L/2. More realistically, localized mixed regions within a stratified fluid are

better represented by a discontinuous density profile in the form:

ρb =


ρ0

(
1− z

H1

)
|z| ≤ L

2

ρ0

(
1− z

H0

)
|z| > L

2

(19)

This is called ‘N2 -barrier3’ of depth L as shown in figure 1. Where H0 ≡ g
N2

0
and H1 ≡

g
N2

1
measure the strength of stratification respectively outside and within a partially

mixed region of depth L. Consistent with the Boussinesq approximation we assume

H0, H1 � L, k−1. The corresponding squared buoyancy frequency is the same as that

for the generalization of the N2-barrier except for infinite spikes at z = −L/2 where

the density changes discontinuously by ∆ρ0 = ρ0

[
(N2

0−N2
1 )

g

] (
L
2

)
. The prescribed ‘N2-
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barrier2’ in this case is as follows:

N2 =


N2

0 |z| > L
2

N2
1 |z| ≤ L

2

(20)

where, N1 ≤ ω ≤ N0, requiring velocity and pressure to be continuous across the

interface [16] we compute the transmission coefficient in the N≤ω ≤ N0 case, is given

by:

Tm(mix) =

[
1 +

(η2 + ξ2)

(4ξ2η2)
sinh2(ξL)Γ2

rmix

]−1

. (21)

in which, Tm(mix) =
[
1 +

L2α2N2
0 (1−σ2)

4(ω2−4Ω2)
− Lξ coth(Lξ)

]
. In the limit Ω → 0 in (20)

reduces to non-conducting fluid results of [6]. However we have plotted the graph of

Tm(mix) against Ω in figure 4 when ω > 2Ω.

The contour plots for the variation of the transmission coefficient for a conducting

rotating fluid in the N2-barrier1, N2-barrier2, N2-barrier3 is given in figure 5.
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6. Results and Conclusions

Transmission of internal gravity waves is analysed in the stratified regions for a conduct-

ing rotating fluid. We group the wave solution as upward and downward propagating

waves using group velocity and energy approach. The wave equation is derived and the

wave solution analysed for transmission in the all the three regions. We have obtained

the transmission coefficient for the effect of rotation and magnetic field for different

density variations. The analytical solutions has been obtained considering the vertical

wave numbers (in the region |z| ≤ L/2) and ( in the region |z| > L/2) defined as real

or imaginary. Derived transmission coefficients are plotted in these regions shows a

decrease in the transmission of the internal gravity waves revealing the evanescence in

the N2 reduced regions.

In the N2-barrrier1 evanescence of the internal gravity waves is more horizontal as shown

in figure 2 where transmission is slowly decreasing with increasing Alfvén velocity both

in case of varying frequency, ω and buoyancy frequency, N and in figure 3 buoyancy

frequency, N is weakly stratified and transmission in this case is also reduced and

hence evanescence occur in N2-barrrier2 where density is assumed to vary continuously

whereas in N2-barrrier3 localised mixed regions with stratification transmission is more

and reduced in the barrier region with exactly going to the existing limits for the case

of non-conducting and non-rotating fluids. The contour plots of the transmission of

waves using N2-barrrier lengths (L), rotational parameter (Ω), Alfvén velocity (A) of
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the internal gravity waves also reveal that existence of evanescence in the transmission

along the different density barriers. In figure5 we see that the transmission is high in the

middle region and slowly reduced in the above and below regions which reveals the more

transmission along the horizontal region. Hence in the N2-barrrier1 we observe that

the transmission is decreased and waves are along the horzontal direction signifies the

trapping of the upward propagating internal gravity waves in the stratified region and in

case of N2-barrrier3 which is mixed N2 region the transmission is more comparatively

to the other two cases.

We find that, the effect of rotational and magnetic fields is to make the wave to prop-

agate along the fluid lines rather than allow it to propagate upwards which is depicted

in graphs. This is because the gravity waves propagate along the fluid lines rather than

allow it to propagate upwards due to the effect of rotation and magnetic field. The

above results conclude that rotation and magnetic field signifies the evanescence in the

barrier region.
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