International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 45-57

ON FUZZY UPPER AND LOWER WEAKLY e^* -CONTINUOUS MULTIFUNCTIONS

M. POONGUZHALI¹, C. LOGANATHAN², B. VIJAYALAKSHMI³

AND A. VADIVEL⁴

 ¹ Department of Mathematics, SSM College of Arts and Science, Komarapalayam, Namakkal, Tamil Nadu-638 183, India
 ² Department of Mathematics, Maharaja Arts and Science College, Coimbatore, Tamil Nadu- 641 407, India
 ³ Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu-608 002, India
 ⁴ Department of Mathematics, Gov. Arts College (Autonomous), Karur, Tamil Nadu-639 005, India

Abstract

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower weakly e^* -continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of fuzzy upper (resp. lower) weakly e^* -continuous multifunctions are presented and their mutual relationships are established in *L*-fuzzy topological spaces.

Key Words and Phrases : Fuzzy upper (resp. lower) weakly e^{*}-continuous multifunction, Fuzzy upper (resp. lower) almost e^{*}-continuous multifunction.

2000 AMS Subject Classification : 54A40, 54C08, 54C60.

© http://www.ascent-journals.com

UGC approved journal (Sl No. 48305)

1. Introduction

Kubiak [16] and \hat{S} ostak [24] introduced the notion of (L-)fuzzy topological space as a generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by Chang [6] and Goguen [9]. It is the grade of openness of an L-fuzzy set. A general approach to the study of topological type structures on fuzzy powersets was developed in ([10-12], [16], [17], [24-26]).

Berge [5] introduced the concept multimapping $F: X \multimap Y$ where X and Y are topological spaces and Popa [22,23] introduced the notion of irresolute multimapping. After Chang introduced the concept of fuzzy topology [6], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many authors from different view points (eg. see [3], [4], [19-21]). Tsiporkova et al., [30,31] introduced the continuity of fuzzy multivalued mappings in the Chang's fuzzy topology [6]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana et al. [29] and Vadivel et al. [34] introduced the concept of r-fuzzy e and e^{*}-open sets and r-fuzzy e and e^{*}-continuity in Šostak's fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower weakly e^* continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these multifunctions are presented and their mutual
relationships are established in *L*-fuzzy topological spaces.

Throughout this paper, nonempty sets will be denoted by X, Y etc., L = [0, 1] and $L_0 = (0, 1]$. The family of all fuzzy sets in X is denoted by L^X . The complement of an L-fuzzy set λ is denoted by λ^c . This symbol $-\infty$ for a multifunction.

For $\alpha \in L$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in L_0$ is an element of L^X such that $x_t(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$ The family of all fuzzy points in X is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ iff $t \leq \lambda(x)$.

All other notations are standard notations of L-fuzzy set theory.

2. Preliminaries

Definition 2.1 [1]: Let $F: X \to Y$, then F is called a fuzzy multifunction (FM, for short) if and only if $F(x) \in L^Y$ for each $x \in X$. The degree of membership of y in F(x)

is denoted by $F(x)(y) = G_F(x, y)$ for any $(x, y) \in X \times Y$. The domain of F, denoted by domain(F) and the range of F, denoted by rng(F), for any $x \in X$ and $y \in Y$, are defined by :

$$dom(F)(x) = \bigvee_{y \in Y} G_F(x, y) \text{ and } rng(F)(y) = \bigvee_{x \in X} G_F(x, y).$$

Definition 2.2 [1] : Let $F : X \multimap Y$ be a FM. Then F is called:

- (i) Normalized iff for each $x \in X$, there exists $y_0 \in Y$ such that $G_F(x, y_0) = \overline{1}$.
- (ii) A crisp iff $G_F(x, y) = \overline{1}$ for each $x \in X$ and $y \in Y$.

Definition 2.3 [1] : Let $F : X \multimap Y$ be a FM. Then

(i) The image of $\lambda \in L^X$ is an L-fuzzy set $F(\lambda) \in L^Y$ defined by

$$F(\lambda)(y) = \bigvee_{x \in X} [G_F(x, y) \land \lambda(x)]$$

(ii) The lower inverse of $\mu \in L^Y$ is an L-fuzzy set $F^l(\mu) \in L^X$ defined by

$$F^{l}(\mu)(x) = \bigvee_{y \in Y} [G_{F}(x, y) \land \mu(y)].$$

(iii) The upper inverse of $\mu \in L^Y$ is an L-fuzzy set $F^u(\mu) \in L^X$ defined by

$$F^u(\mu)(x) = \bigwedge_{y \in Y} [G^c_F(x, y) \lor \mu(y)].$$

Theorem 2.1 [1] : Let $F : X \multimap Y$ be a FM. Then

- (i) $F(\lambda_1) \leq F(\lambda_2)$ if $\lambda_1 \leq \lambda_2$.
- (ii) $F^{l}(\mu_{1}) \leq F^{l}(\mu_{2})$ and $F^{u}(\mu_{1}) \leq F^{u}(\mu_{2})$ if $\mu_{1} \leq \mu_{2}$.

(iii)
$$F^{l}(\mu^{c}) = (F^{u}(\mu))^{c}$$
.

- (iv) $F^{u}(\mu^{c}) = (F^{l}(\mu))^{c}$.
- (v) $F(F^u(\mu)) \leq \mu$ if F is a crisp.
- (vi) $F^u(F(\lambda)) \ge \lambda$ if F is a crisp.

Definition 2.4 [1]: Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM. Then the composition $H \circ F$ is defined by

$$((H \circ F)(x))(z) = \bigvee_{y \in Y} [G_F(x, y) \wedge G_H(y, z)].$$

Theorem 2.2 [1]: Let $F: X \multimap Y$ and $H: Y \multimap Z$ be FM. Then we have the following

- (i) $(H \circ F) = F(H)$.
- (ii) $(H \circ F)^u = F^u(H^u).$
- (iii) $(H \circ F)^l = F^l(H^l).$

Theorem 2.3 [1]: Let $F_i: X \multimap Y$ be a FM. Then we have the following

(i) $(\bigcup_{i\in\Gamma} F_i)(\lambda) = \bigvee_{i\in\Gamma} F_i(\lambda).$

(ii)
$$(\bigcup_{i\in\Gamma} F_i)^l(\mu) = \bigvee_{i\in\Gamma} F_i^l(\mu)$$

(iii) $(\bigcup_{i\in\Gamma} F_i)^u(\mu) = \bigwedge_{i\in\Gamma} F_i^u(\mu).$

Definition 2.5 [12, 16, 18, 24] : An *L*-fuzzy topological space (*L*-fts, in short) is a pair (X, τ) , where X is a nonempty set and $\tau : L^X \to L$ is a mapping satisfying the following properties.

(1) $\tau(\overline{0}) = \tau(\overline{1}) = 1$,

(2)
$$\tau(\mu_1 \wedge \mu_2) \ge \tau(\mu_1) \wedge \tau(\mu_2)$$
, for any $\mu_1, \ \mu_2 \in I^X$.

(3) $\tau(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}\tau(\mu_i)$, for any $\{\mu_i\}_{i\in\Gamma} \subset I^X$,

Then τ is called an *L*-fuzzy topology on *X*. For every $\lambda \in L^X$, $\tau(\lambda)$ is called the degree of openness of the *L*-fuzzy set λ .

A mapping $f : (X, \tau) \to (Y, \eta)$ is said to be continuous with respect to *L*-fuzzy topologies τ and η iff $\tau(f^{-1}(\mu)) \ge \eta(\mu)$ for each $\mu \in L^Y$.

Theorem 2.4 [7, 14, 15, 18]: Let (X, τ) be a an *L*-fts. Then for each $\lambda \in L^X$, $r \in L_0$, we define *L*-fuzzy operators C_{τ} and $I_{\tau}: L^X \times L_0 \to L^X$ as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in L^X : \lambda \le \mu, \ \tau(\overline{1} - \mu) \ge r \}.$$

$$I_{\tau}(\lambda, r) = \bigvee \{ \mu \in L^X : \lambda \ge \mu, \ \tau(\mu) \ge r \}.$$

For λ , $\mu \in L^X$ and $r, s \in L_0$, the operator C_{τ} satisfies the following conditions:

- (1) $C_{\tau}(\overline{0},r) = \overline{0},$
- (2) $\lambda \leq C_{\tau}(\lambda, r),$
- (3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r),$
- (4) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r),$
- (5) $C_{\tau}(\lambda, r) = \lambda \text{ iff } \tau(\lambda^c) \ge r.$
- (6) $C_{\tau}(\lambda^c, r) = (I_{\tau}(\lambda, r))^c$ and $I_{\tau}(\lambda^c, r) = (C_{\tau}(\lambda, r))^c$.

Definition 2.6 [1]: Let $F: X \multimap Y$ be a FM between two *L*-fts's (X, τ) , (Y, η) and $r \in L_0$. Then *F* is called:

- (i) Fuzzy upper semi (or Fuzzy upper) (in short, FUS (or FU))-continuous at a *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^X, \tau(\lambda) \ge r$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \le F^u(\mu)$. *F* is *FU*-continuous iff it is *FU*-continuous at every $x_t \in dom(F)$.
- (ii) Fuzzy lower semi (or Fuzzy lower) (in short, *FLS* (or *FL*))-continuous at a *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^X$, $\tau(\lambda) \ge r$ and $x_t \in \lambda$ such that $\lambda \le F^l(\mu)$. *F* is *FL*-continuous iff it is *FL*-continuous at every $x_t \in dom(F)$.
- (iii) Fuzzy continuous if it is FU-continuous and FL-continuous.

Theorem 2.5 [1]: Let $F: X \multimap Y$ be a fuzzy multifunction between two *L*-fts's (X, τ) and (Y, η) . Let $\mu \in L^Y$. Then we have the following

- (1) F is FL-continuous iff $\tau(F^l(\mu)) \ge \eta(\mu)$.
- (2) If F is normlized, then F is FU-continuous iff $\tau(F^u(\mu)) \ge \eta(\mu)$.
- (3) F is FL-continuous iff $\tau(\overline{1} F^u(\mu)) \ge \eta(\overline{1} \mu)$.
- (4) If F is normalized, then F is FU-continuous iff $\tau(\overline{1} F^l(\mu)) \ge \eta(\overline{1} \mu)$.

Definition 2.7 [13] : Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0, \lambda$ is called *r*-fuzzy regular open (for short, *r*-fro) (resp. *r*-fuzzy regular closed (for short, *r*-frc)) if $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$ (resp. $\lambda = C_{\tau}(I_{\tau}(\lambda, r), r)$).

Definition 2.8 [13] : Let (X, τ) be a fts. Then for each $\mu \in I^X$, $x_t \in P_t(X)$ and $r \in I_0$,

- (i) μ is called r-open Q_{τ} -neighbourhood of x_t if $x_t q \mu$ with $\tau(\mu) \geq r$.
- (ii) μ is called r-open R_{τ} -neighbourhood of x_t if $x_t q \mu$ with $\mu = I_{\tau}(C_{\tau}(\mu, r), r)$.

We denoted

$$Q_{\tau}(x_t, \ r) = \{ \mu \in I^X : x_t q \mu, \ \tau(\mu) \ge r \},\$$
$$R_{\tau}(x_t, \ r) = \{ \mu \in I^X : x_t q \mu, \ \mu = I_{\tau}(C_{\tau}(\mu, \ r), \ r) \}$$

Definition 2.9 [13] : Let (X, τ) be a fts. Then for each $\lambda \in I^X$, $x_t \in P_t(X)$ and $r \in I_0$,

- (i) x_t is called r- τ cluster point of λ if for every $\mu \in Q_\tau(x_t, r)$, we have $\mu q \lambda$.
- (ii) x_t is called r- δ cluster point of λ if for every $\mu \in R_\tau(x_t, r)$, we have $\mu q \lambda$.
- (iii) An δ -closure operator is a mapping $D_{\tau} : I^X \times I \to I^X$ defined as follows: $\delta C_{\tau}(\lambda, r)$ or $D_{\tau}(\lambda, r) = \bigvee \{ x_t \in P_t(X) : x_t \text{ is } r\text{-}\delta\text{-cluster point of } \lambda \}.$ Equivalently, $\delta C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \mu \ge \lambda, \ \mu \text{ is a } r\text{-frc set} \}$ and $\delta I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \le \lambda, \ \mu \text{ is a } r\text{-fro set} \}.$

Definition 2.10 [13]: Let (X, τ) be a fuzzy topological space. For $\lambda \in I^X$ and $r \in I_0$, λ is called *r*-fuzzy δ -closed iff $\lambda = \delta C_{\tau}(\lambda, r)$ or $D_{\tau}(\lambda, r)$.

Definition 2.11 [2]: Let $F: X \multimap Y$ be a FM between two *L*-fts's (X, τ) , (Y, η) and $r \in L_0$. Then *F* is called:

- (i) Fuzzy upper almost continuous (FUA-continuous, in short) at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^X$, $\tau(\lambda) \ge r$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \le F^u(I_\eta(C_\eta(\mu, r), r))$.
- (ii) Fuzzy lower almost continuous (*FLA*-continuous, in short) at any *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^X$, $\tau(\lambda) \ge r$ and $x_t \in \lambda$ such that $\lambda \le F^l(I_\eta(C_\eta(\mu, r), r))$.

(iii) FUA-continuous (resp. FLA-continuous) iff it is FUA-continuous (resp. FLA-continuous) at every $x_t \in dom(F)$.

Definition 2.12 [2] : Let $F : X \multimap Y$ be a FM between *L*-fts's (X, τ) , (Y, η) and $r \in L_0$. Then *F* is called.

- (i) Fuzzy upper weakly continuous (*FUW*-continuous, for short) at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$ there exists $\lambda \in L^X$, $\tau(\lambda) \ge r$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \le F^u(C_\eta(\mu, r))$
- (ii) Fuzzy lower weakly continuous (*FLW*-continuous, for short)) at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ each $\mu \in L^Y$ and $\eta(\mu) \geq r$ there exists $\lambda \in L^X$, $\tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \leq F^l(C_\eta(\mu, r))$
- (iii) FUW-continuous (resp. FLW-continuous) iff it is FUW-continuous (resp. FLWcontinuous) at every $x_t \in dom(F)$.

Definition 2.13 [29] : Let (X, τ) be a an *L*-fts. Then for each $\lambda, \mu \in L^X, r \in L_0$. Then λ is called

- (1) λ is called an *r*-fuzzy *e*-open (briefly, *r*-feo) set if $\lambda \leq C_{\tau}(\delta_{\tau}(\lambda, r), r) \vee I_{\tau}(\delta C_{\tau}(\lambda, r), r)$.
- (2) λ is called an *r*-fuzzy *e*-closed (briefly, *r*-feo) set if $C_{\tau}(\delta I_{\tau}(\lambda, r), r) \wedge I_{\tau}(\delta C_{\tau}(\lambda, r), r) \leq \lambda$.

Definition 2.14 [29] : Let (X, τ) be an *L*-fts. Then for each $\lambda, \mu \in L^X, r \in L_0$. Then λ is called

- (i) $eI_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \leq \lambda, \mu \text{ is a r-feo set } \}$ is called the *r*-fuzzy e-interior of λ .
- (ii) $eC_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \mu \ge \lambda, \ \mu \text{ is a r-fec set } \}$ is called the *r*-fuzzy e-closure of λ .

Definition 2.15 [27] : Let $F : X \multimap Y$ be a FM between two *L*-fts's (X, τ) , (Y, η) and $r \in L_0$. Then *F* is called:

(i) Fuzzy upper almost e^* -continuous ($FUAe^*$ -continuous, in short) at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exist r-f e^* o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \le F^u(I_\eta(C_\eta(\mu, r), r))$. 52

- (ii) Fuzzy lower almost e^* -continuous (*FLAe*-continuous, in short) at any *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exist *r*-fe^{*}o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \le F^l(I_\eta(C_\eta(\mu, r), r))$.
- (iii) $FUAe^*$ -continuous (resp. $FLAe^*$ -continuous) iff it is $FUAe^*$ -continuous (resp. $FLAe^*$ -continuous) at every $x_t \in dom(F)$.

3. Fuzzy Upper and Lower Weakly e^{*}-continuous Multifunctions

Definition 3.1: Let $F : X \multimap Y$ be a FM between two *L*-fts's (X, τ) , (Y, η) and $r \in L_0$. Then *F* is called.

- (i) Fuzzy upper weakly e^* -continuous ($FUWe^*$ -continuous, in short) at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exist r-f e^* o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \le F^u(C_\eta(\mu, r))$.
- (ii) Fuzzy lower weakly e^* -continuous ($FLWe^*$ -continuous, in short) at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exist r-fe*o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \le F^l(C_\eta(\mu, r))$.
- (iii) $FUWe^*$ -continuous (resp. $FLWe^*$ -continuous) iff it is $FUWe^*$ -continuous (resp. $FLWe^*$ -continuous) at every $x_t \in dom(F)$.

Proposition 3.1 : If F is normalized, then F is $FUWe^*$ -continuous at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists r-fe*o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \le F^u(C_\eta(\mu, r))$.

Theorem 3.1: Let $F: X \multimap Y$ be a FM between two *L*-fts's (X, τ) and (Y, η) . Then F is $FLWe^*$ -continuous if and only if $F^l(\mu) \leq e^*I_{\tau}(F^l(C_{\eta}(\mu, r)), r)$ for any $\mu \in L^Y$ and $\eta(\mu) \geq r$.

Proof: Let F be $FLWe^*$ -continuous, $\mu \in L^Y$ and $\eta(\mu) \geq r$. If $x_t \in F^l(\mu)$, then there exists r-fe*o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(C_\eta(\mu, r))$ and hence $\lambda \leq e^*I_\tau(F^l(C_\eta(\mu, r)), r)$. Thus $F^l(\mu) \leq e^*I_\tau(C_\eta(\mu, r), r)$.

Conversely, let $x_t \in dom(F)$, $\mu \in L^Y$, $\eta(\mu) \ge r$ and $x_t \in F^l(\mu)$. Then

$$x_t \in F^l(\mu) \le e^* I_\eta(F^l(C_\eta(\mu, r)), r) = \lambda \ (say).$$

Thus, $x_t \in \lambda$ and λ is r-fe^{*}o set such that

$$\lambda = e^* I_\tau (F^l (C_\eta(\mu, r)), r) \le F^l (C_\eta(\mu, r)).$$

Hence, F is $FLWe^*$ -continuous.

Theorem 3.2: Let $F : X \multimap Y$ be a FM and normalized between two *L*-fts's $(X, \tau), (Y, \eta)$. Then F is $FUWe^*$ -continuous if and only if $F^u(\mu) \leq e^* I_\tau(F^u(C_\eta(\mu, r)), r)$ for any $\mu \in L^Y$ and $\eta(\mu) \geq r$.

Proof: This can be proved in a similar way as the above Theorem 3.1**Remark 3.1**: The following implications hold.

- (i) FUW-continuous $\Rightarrow FUWe^*$ -continuous.
- (ii) FLW-continuous $\Rightarrow FLWe^*$ -continuous.

The converse of the above Remark 3.1 need not be true as shown by the following examples.

Example 3.1: Let $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ and $F : X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.8, G_F(x_1, y_2) = 0.9, G_F(x_1, y_3) = 0.8, G_F(x_2, y_1) = \overline{1}, G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as follows: $\lambda_1(x_1) = 0.3, \lambda_1(x_2) = 0.1; \lambda_2(x_1) = 0.7, \lambda_2(x_2) = 0.7$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.3, \mu(y_2) = 0.1, \mu(y_3) = 0.2$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau : L^X \to L$ and $\eta : L^Y \to L$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is $FUWe^*$ -continuous but not FUW-continuous because μ is $\frac{1}{2}$ -fuzzy open set in Y, $F^u(C_\eta(\mu, r)) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in X.

Example 3.2: Let $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ and $F : X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.2, G_F(x_1, y_2) = \overline{1}, G_F(x_1, y_3) = \overline{0}, G_F(x_2, y_1) = 0.5, G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as follows: $\lambda_1(x_1) = 0.4, \lambda_1(x_2) = 0.3; \lambda_2(x_1) = 0.9, \lambda_2(x_2) = 0.5$ and μ be

a fuzzy subset of Y defined as $\mu(y_1) = 0.4$, $\mu(y_2) = 0.1$, $\mu(y_3) = 0.1$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau : L^X \to L$ and $\eta : L^Y \to L$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is $FLWe^*$ -continuous but not FLW-continuous because μ is $\frac{1}{2}$ -fuzzy open set in Y, $F^l(C_\eta(\mu, r)) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in X.

Remark 3.2 : The following implications hold.

- (i) FUA-continuous $\Rightarrow FUAe^*$ -continuous.
- (ii) FLA-continuous $\Rightarrow FLAe^*$ -continuous.

The converse of the above Remark ?? need not be true as shown by the following example.

Example 3.3: Let $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ and $F : X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.1, G_F(x_1, y_2) = \overline{1}, G_F(x_1, y_3) = 0, G_F(x_2, y_1) = 0.5, G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = \overline{1}$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as $\lambda_1(x_1) = 0.3, \lambda_1(x_2) = 0.5; \lambda_2(x_1) = 0.5, \lambda_2(x_2) = 0.5, \mu_1$ and μ_2 be a fuzzy subsets of Y defined as $\mu_1(y_1) = 0.5, \mu_1(y_2) = 0.5, \mu_1(y_3) = 0.5$ and $\mu_2(y_1) = 0.4, \mu_2(y_2) = 0.4, \mu_2(y_3) = 0.4$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau : L^X \to L$ and $\eta : L^Y \to L$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \mu = \mu_1, \ \mu_2, \\ 0, & \text{otherwise.} \end{cases}$$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is

(i) *FUAe*-continuous but not *FUA*-continuous because μ_1 is $\frac{1}{2}$ -fro set in *Y*, $F^u(\mu_1) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in *X*.

(ii) *FLAe*-continuous but not *FLA*-continuous because μ_1 is $\frac{1}{2}$ -fro set in *Y*, $F^l(\mu_1) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in *X*.

Theorem 3.3 : Let $\{F_i\}_{i\in\Gamma}$ be a family of $FLAe^*$ -continuous between two *L*-fts's (X, τ) and (Y, η) . Then $\bigcup_{i\in\Gamma} F_i$ is $FLAe^*$ -continuous.

Proof : Let $\mu \in L^Y$, then

$$(\bigcup_{i\in\Gamma} F_i)^l(\mu) = \bigvee_{i\in\Gamma} (F_i^l(\mu)),$$

by Theorem 2.3 (ii). Since $\{F_i\}_{i\in\Gamma}$ is a family of $FLAe^*$ -continuous between two Lfts's (X, τ) and (Y, η) , then $F_i^l(\mu)$ is r-fe*o set for any r-fro set μ and each $i \in \Gamma$. Then, we have $(\bigcup_{i\in\Gamma} F_i)^l(\mu) = \bigvee_{i\in\Gamma} (F_i^l(\mu))$ is r-fe*o set for any r-fro set μ . Hence $\bigcup_{i\in\Gamma} F_i$ is $FLAe^*$ -continuous.

Theorem 3.4: Let F_1 and F_2 be two normalized $FUAe^*$ -continuous between two L-fts's (X, τ) and (Y, η) . Then $F_1 \cup F_2$ is $FUAe^*$ -continuous.

Proof: Let $\mu \in L^Y$, then $(F_1 \cup F_2)^u(\mu) = F_1^u(\mu) \wedge F_2^u(\mu)$ by Theorem 2.3(iii). Since F_1 and F_2 be two normalized $FUAe^*$ -continuous between two *L*-fts's (X, τ) and (Y, η) , then $F_i^u(\mu)$ is *r*-fe^{*}o-set for any *r*-fro set μ and $i \in \{1, 2\}$. Then, we have $(F_1 \cup F_2)^u(\mu) =$ $F_1^u(\mu) \wedge F_2^u(\mu)$ is *r*-fe^{*}o-set for each *r*-fro set μ . Hence $F_1 \cup F_2$ is $FUAe^*$ -continuous. \Box **Theorem 3.5**: Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let $(X, \tau), (Y, \eta)$ and (Z, δ) be three *L*-fts's. If *F* is *FLe**-continuous and *H* is *FLA*-continuous, then $H \circ F$ is *FLAe**-continuous.

Proof: Let $\nu \in L^Z$, ν is *r*-fro set. Since *H* is *FLA*-continuous, then from Definition 2.11, $H^l(\nu)$ is *r*-fuzzy open set in *Y*. Also, *F* is *FLe*^{*}-continuous $F^l(H^l(\nu))$ is *r*-fe^{*}0 set in *Y*. Hence, we have $(H \circ F)^l(\nu) = F^l(H^l(\nu))$ is *r*-fe^{*}0. Thus $H \circ F$ is *FLAe*^{*}-continuous. \Box

Theorem 3.6: Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three *L*-fts's. If *F* and *H* are normalized, *F* is *FUe*^{*}-continuous and *H* is *FUA*-continuous, then $H \circ F$ is *FUAe*^{*}-continuous.

Proof : Proof is similar to the above Theorem 3.5.

References

- Abbas S. E., Hebeshi M. A. and Taha I. M., On fuzzy upper and lower semicontinuous multifunctions, The Journal of Fuzzy Mathematics, 22(4) (2014), 951-962.
- [2] Abbas S. E., Hebeshi M. A. and Taha I. M., On upper and lower almost weakly continuous fuzzy multifunctions, Iranian Journal of Fuzzy Systems, 12(1) (2015), 101-114.

- [3] Al-hamadi K. M. A. and Nimse S. B., On fuzzy α-continuous multifunctions, Miskolc Mathematical Notes, 11(2) (2010), 105-112.
- [4] Alimohammady M., Ekici E., Jafari S. and Roohi M., On fuzzy upper and lower contra continuous multifunctions, Iranian Journal of Fuzzy Systems, 8(3) (2011), 149-158.
- [5] Berge C., Topological Spaces Including a Treatment of Multi-valued Functions, Vector Spaces and Convexity, Oliver, Boyd London, (1963).
- [6] Chang C.I., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-189.
- [7] Chattopadhyay K. C. and Samanta S. K., Fuzzy topology : fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy sets and systems, 54(2) (1993), 207-212.
- [8] Chandrasekar V., Parimala S. and Vijayalakshmi B., On Fuzzy Upper and Lower Almost *e*-continuous Multifunctions, (submitted).
- [9] Goguen J. A., The fuzzy Tychonoff Theorem, J. Math. Anal. Appl., 43(3) (1973), 734-742.
- [10] Höhle U., Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980), 659-673.
- [11] Höhle U. and Šostak A. P., A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, 73 (1995), 131-149.
- [12] Höhle U. and Šostak A. P., Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, (1999), 123-272.
- [13] Kim Y. C. and Park J. W., r-fuzzy δ-closure and r-fuzzy θ-closure sets, J. Korea Fuzzy Logic and Intelligent systems, 10(6) (2000), 557-563.
- [14] Kim Y. C., Ramadan A. A. and Abbas S. E., Weaker forms of continuity in Šostak's fuzzy topology, Indian J. Pure and Appl. Math., 34(2) (2003), 311-333.
- [15] Kim Y. C., Initial L-fuzzy closure spaces, Fuzzy Sets and Systems., 133 (2003), 277-297.
- [16] KubiakT., On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, (1985).
- [17] Kubiak T. and Sostak A. P., Lower set valued fuzzy topologies, Questions Math., 20(3) (1997), 423-429.
- [18] Liu Y. and Luo M., Fuzzy Topology, World Scientific Publishing Singapore, (1997), 229-236.
- [19] Mahmoud R. A., An application of continuous fuzzy multifunctions, Chaos, Solitons and Fractals, 17 (2003), 833-841.
- [20] Mukherjee M. N.. and Malakar S., On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41 (1991), 113–125.
- [21] Papageorgiou N. S., Fuzzy topolgy and fuzzy multifunctions, J. Math. Anal. Appl., 109 (1985), 397-425.
- [22] Popa V., On Characterizations of irresolute multimapping, J. Univ. Kuwait (sci), 15 (1988), 21-25.
- [23] Popa V., Irresolute multifunctions, Internet J. Math and Math. Sci., 13(2) (1990), 275-280.

- [24] Šostak A. P., On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo Ser II, 11 (1985), 89-103.
- [25] Šostak A. P., Two decades of fuzzy topology : Basic ideas, Notion and results, Russian Math. Surveys, 44(6) (1989), 125-186.
- [26] Sostak A. P., Basic structures of fuzzy topology, J. Math. Sciences, 78(6) (1996), 662-701.
- [27] Poonguzhali M., Loganathan C., Vijayalakshmi B. and Vadivel A., Fuzzy upper and lower almost e^* -continuous multifunctions, (submitted).
- [28] Prabhu A., Vadivel A. and Vijayalakshmi B., On fuzzy upper and lower *e*-continuous multifunctions, (submitted).
- [29] Sobana D., Chandrasekar V. and Vadivel A., Fuzzy e-continuity in Šostak's fuzzy topological spaces, (Submitted).
- [30] Tsiporkova E., De Baets B. and Kerre E., A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy sets and systems, 85 (1997), 93-108.
- [31] Tsiporkova E., De Baets B. and Kerre., Continuity of fuzzy multivalued mappings, Fuzzy sets and systems, 94 (1998), 335-348.
- [32] Vadivel A. and Vijayalakshmi B., Fuzzy *e*-irresolute mappings and fuzzy *e*-connectedness in smooth topological spaces, (submitted).
- [33] Vadivel A. and Vijayalakshmi B., Fuzzy Almost *e*-continuous mappings and fuzzy *e*-connectedness in smooth topological spaces, accepted in The Journal of Fuzzy Mathematics.
- [34] Vadivel A., Vijayalakshmi B. and Prabhu A., Fuzzy e^* -open sets in Šostak's fuzzy topological spaces, (submitted).
- [35] Wong C. K., Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl, 45 (1974), 512-521.