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Abstract

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower weakly
e∗-continuous multifunction on fuzzy topological spaces in Ŝostak sense. Several
characterizations and properties of fuzzy upper (resp. lower) weakly e∗-continuous
multifunctions are presented and their mutual relationships are established in L-
fuzzy topological spaces.
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1. Introduction

Kubiak [16] and Ŝostak [24] introduced the notion of (L-)fuzzy topological space as a

generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by

Chang [6] and Goguen [9]. It is the grade of openness of an L-fuzzy set. A general

approach to the study of topological type structures on fuzzy powersets was developed

in ([10-12], [16], [17], [24-26]).

Berge [5] introduced the concept multimapping F : X ( Y where X and Y are topo-

logical spaces and Popa [22,23] introduced the notion of irresolute multimapping. After

Chang introduced the concept of fuzzy topology [6], continuity of multifunctions in fuzzy

topological spaces have been defined and studied by many authors from different view

points (eg. see [3], [4], [19-21]). Tsiporkova et al.,[30,31] introduced the continuity of

fuzzy multivalued mappings in the Chang’s fuzzy topology [6]. Later, Abbas et al., [1]

introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions

in L-fuzzy topological spaces. Recently, Sobana et al. [29] and Vadivel et al. [34] in-

troduced the concept of r-fuzzy e and e∗-open sets and r-fuzzy e and e∗-continuity in

Šostak’s fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower weakly e∗-

continuous multifunction on fuzzy topological spaces in Ŝostak sense. Several char-

acterizations and properties of these multifunctions are presented and their mutual

relationships are established in L-fuzzy topological spaces.

Throughout this paper, nonempty sets will be denoted by X, Y etc., L = [0, 1] and

L0 = (0, 1]. The family of all fuzzy sets in X is denoted by LX . The complement of an

L-fuzzy set λ is denoted by λc. This symbol ( for a multifunction.

For α ∈ L, α(x) = α for all x ∈ X. A fuzzy point xt for t ∈ L0 is an element of LX such

that xt(y) =

{
t if y = x

0 if y 6= x.
The family of all fuzzy points in X is denoted by Pt(X). A

fuzzy point xt ∈ λ iff t ≤ λ(x).

All other notations are standard notations of L-fuzzy set theory.

2. Preliminaries

Definition 2.1 [1] : Let F : X ( Y, then F is called a fuzzy multifunction (FM, for

short) if and only if F (x) ∈ LY for each x ∈ X. The degree of membership of y in F (x)
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is denoted by F (x)(y) = GF (x, y) for any (x, y) ∈ X × Y. The domain of F, denoted

by domain(F ) and the range of F, denoted by rng(F ), for any x ∈ X and y ∈ Y, are

defined by :

dom(F )(x) =
∨
y∈Y

GF (x, y) and rng(F )(y) =
∨
x∈X

GF (x, y).

Definition 2.2 [1] : Let F : X ( Y be a FM. Then F is called:

(i) Normalized iff for each x ∈ X, there exixts y0 ∈ Y such that GF (x, y0) = 1.

(ii) A crisp iff GF (x, y) = 1 for each x ∈ X and y ∈ Y.

Definition 2.3 [1] : Let F : X ( Y be a FM. Then

(i) The image of λ ∈ LX is an L-fuzzy set F (λ) ∈ LY defined by

F (λ)(y) =
∨
x∈X

[GF (x, y) ∧ λ(x)].

(ii) The lower inverse of µ ∈ LY is an L-fuzzy set F l(µ) ∈ LX defined by

F l(µ)(x) =
∨
y∈Y

[GF (x, y) ∧ µ(y)].

(iii) The upper inverse of µ ∈ LY is an L-fuzzy set F u(µ) ∈ LX defined by

F u(µ)(x) =
∧
y∈Y

[GcF (x, y) ∨ µ(y)].

Theorem 2.1 [1] : Let F : X ( Y be a FM. Then

(i) F (λ1) ≤ F (λ2) if λ1 ≤ λ2.

(ii) F l(µ1) ≤ F l(µ2) and F u(µ1) ≤ F u(µ2) if µ1 ≤ µ2.

(iii) F l(µc) = (F u(µ))c.

(iv) F u(µc) = (F l(µ))c.

(v) F (F u(µ)) ≤ µ if F is a crisp.

(vi) F u(F (λ)) ≥ λ if F is a crisp.
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Definition 2.4 [1] : Let F : X ( Y and H : Y ( Z be two FM. Then the composition

H ◦ F is defined by

((H ◦ F )(x))(z) =
∨
y∈Y

[GF (x, y) ∧GH(y, z)].

Theorem 2.2 [1] : Let F : X ( Y and H : Y ( Z be FM. Then we have the following

(i) (H ◦ F ) = F (H).

(ii) (H ◦ F )u = F u(Hu).

(iii) (H ◦ F )l = F l(H l).

Theorem 2.3 [1] : Let Fi : X ( Y be a FM. Then we have the following

(i) (
⋃
i∈Γ

Fi)(λ) =
∨
i∈Γ

Fi(λ).

(ii) (
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ

F li (µ).

(iii) (
⋃
i∈Γ

Fi)
u(µ) =

∧
i∈Γ

F ui (µ).

Definition 2.5 [12, 16, 18, 24] : An L-fuzzy topological space (L-fts, in short) is a

pair (X, τ), where X is a nonempty set and τ : LX → L is a mapping satisfying the

following properties.

(1) τ(0) = τ(1) = 1,

(2) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for any µ1, µ2 ∈ IX .

(3) τ(
∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX ,

Then τ is called an L-fuzzy topology on X. For every λ ∈ LX , τ(λ) is called the degree

of openness of the L-fuzzy set λ.

A mapping f : (X, τ) → (Y, η) is said to be continuous with respect to L-fuzzy

topologies τ and η iff τ(f−1(µ)) ≥ η(µ) for each µ ∈ LY .
Theorem 2.4 [7, 14, 15, 18] : Let (X, τ) be a an L-fts. Then for each λ ∈ LX , r ∈ L0,

we define L-fuzzy operators Cτ and Iτ : LX × L0 → LX as follows:

Cτ (λ, r) =
∧
{µ ∈ LX : λ ≤ µ, τ(1− µ) ≥ r}.

Iτ (λ, r) =
∨
{µ ∈ LX : λ ≥ µ, τ(µ) ≥ r}.

For λ, µ ∈ LX and r, s ∈ L0, the operator Cτ satisfies the following conditions:
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(1) Cτ (0, r) = 0,

(2) λ ≤ Cτ (λ, r),

(3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r),

(4) Cτ (Cτ (λ, r), r) = Cτ (λ, r),

(5) Cτ (λ, r) = λ iff τ(λc) ≥ r.

(6) Cτ (λc, r) = (Iτ (λ, r))c and Iτ (λc, r) = (Cτ (λ, r))c.

Definition 2.6 [1] : Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and

r ∈ L0. Then F is called:

(i) Fuzzy upper semi (or Fuzzy upper) (in short, FUS (or FU))-continuous at a L-

fuzzy point xt ∈ dom(F ) iff xt ∈ F u(µ) for each µ ∈ LY and η(µ) ≥ r, there exists

λ ∈ LX , τ(λ) ≥ r and xt ∈ λ such that λ∧ dom(F ) ≤ F u(µ). F is FU -continuous

iff it is FU -continuous at every xt ∈ dom(F ).

(ii) Fuzzy lower semi (or Fuzzy lower) (in short, FLS (or FL))-continuous at a L-

fuzzy point xt ∈ dom(F ) iff xt ∈ F l(µ) for each µ ∈ LY and η(µ) ≥ r, there exists

λ ∈ LX , τ(λ) ≥ r and xt ∈ λ such that λ ≤ F l(µ). F is FL-continuous iff it is

FL-continuous at every xt ∈ dom(F ).

(iii) Fuzzy continuous if it is FU -continuous and FL-continuous.

Theorem 2.5 [1] : Let F : X ( Y be a fuzzy multifunction between two L-fts’s (X, τ)

and (Y, η). Let µ ∈ LY . Then we have the following

(1) F is FL-continuous iff τ(F l(µ)) ≥ η(µ).

(2) If F is normlized, then F is FU -continuous iff τ(F u(µ)) ≥ η(µ).

(3) F is FL-continuous iff τ(1− F u(µ)) ≥ η(1− µ).

(4) If F is normalized, then F is FU -continuous iff τ(1− F l(µ)) ≥ η(1− µ).
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Definition 2.7 [13] : Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0, λ is called

r-fuzzy regular open (for short, r-fro) (resp. r-fuzzy regular closed (for short, r-frc)) if

λ = Iτ (Cτ (λ, r), r) (resp. λ = Cτ (Iτ (λ, r), r)).

Definition 2.8 [13] : Let (X, τ) be a fts. Then for each µ ∈ IX , xt ∈ Pt(X) and

r ∈ I0,

(i) µ is called r-open Qτ -neighbourhood of xt if xtqµ with τ(µ) ≥ r.

(ii) µ is called r-open Rτ -neighbourhood of xt if xtqµ with µ = Iτ (Cτ (µ, r), r).

We denoted

Qτ (xt, r) = {µ ∈ IX : xtqµ, τ(µ) ≥ r},

Rτ (xt, r) = {µ ∈ IX : xtqµ, µ = Iτ (Cτ (µ, r), r)}.

Definition 2.9 [13] : Let (X, τ) be a fts. Then for each λ ∈ IX , xt ∈ Pt(X) and

r ∈ I0,

(i) xt is called r-τ cluster point of λ if for every µ ∈ Qτ (xt, r), we have µqλ.

(ii) xt is called r-δ cluster point of λ if for every µ ∈ Rτ (xt, r), we have µqλ.

(iii) An δ-closure operator is a mapping Dτ : IX×I → IX defined as follows: δCτ (λ, r)

or Dτ (λ, r) =
∨
{xt ∈ Pt(X) : xt is r-δ-cluster point of λ}.

Equivalently, δCτ (λ, r) =
∧
{µ ∈ IX : µ ≥ λ, µ is a r-frc set} and δIτ (λ, r) =∨

{µ ∈ IX : µ ≤ λ, µ is a r-fro set}.

Definition 2.10 [13] : Let (X, τ) be a fuzzy topological space. For λ ∈ IX and r ∈ I0,

λ is called r-fuzzy δ-closed iff λ = δCτ (λ, r) or Dτ (λ, r).

Definition 2.11 [2] : Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and

r ∈ L0. Then F is called:

(i) Fuzzy upper almost continuous (FUA-continuous, in short) at any L-fuzzy point

xt ∈ dom(F ) iff xt ∈ F u(µ) for each µ ∈ LY and η(µ) ≥ r, there exists λ ∈ LX ,

τ(λ) ≥ r and xt ∈ λ such that λ ∧ dom(F ) ≤ F u(Iη(Cη(µ, r), r)).

(ii) Fuzzy lower almost continuous (FLA-continuous, in short) at any L-fuzzy point

xt ∈ dom(F ) iff xt ∈ F l(µ) for each µ ∈ LY and η(µ) ≥ r, there exists λ ∈ LX ,

τ(λ) ≥ r and xt ∈ λ such that λ ≤ F l(Iη(Cη(µ, r), r)).
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(iii) FUA-continuous (resp. FLA-continuous) iff it is FUA-continuous (resp. FLA-

continuous) at every xt ∈ dom(F ).

Definition 2.12 [2] : Let F : X ( Y be a FM between L-fts’s (X, τ), (Y, η) and

r ∈ L0. Then F is called.

(i) Fuzzy upper weakly continuous (FUW -continuous, for short) at an L-fuzzy point

xt ∈ dom(F ) iff xt ∈ F u(µ) for each µ ∈ LY and η(µ) ≥ r there exists λ ∈ LX ,

τ(λ) ≥ r and xt ∈ λ such that λ ∧ dom(F ) ≤ F u(Cη(µ, r))

(ii) Fuzzy lower weakly continuous (FLW -continuous, for short)) at an L-fuzzy point

xt ∈ dom(F ) iff xt ∈ F l(µ) each µ ∈ LY and η(µ) ≥ r there exists λ ∈ LX ,

τ(λ) ≥ r and xt ∈ λ such that λ ∧ dom(F ) ≤ F l(Cη(µ, r))

(iii) FUW -continuous (resp. FLW -continuous) iff it is FUW -continuous (resp. FLW -

continuous) at every xt ∈ dom(F ).

Definition 2.13 [29] : Let (X, τ) be a an L-fts. Then for each λ, µ ∈ LX , r ∈ L0.

Then λ is called

(1) λ is called an r-fuzzy e-open (briefly, r-feo) set if λ ≤ Cτ (δτ (λ, r), r)∨Iτ (δCτ (λ, r), r).

(2) λ is called an r-fuzzy e-closed (briefly, r-feo) set if Cτ (δIτ (λ, r), r)∧Iτ (δCτ (λ, r), r) ≤
λ.

Definition 2.14 [29] : Let (X, τ) be an L-fts. Then for each λ, µ ∈ LX , r ∈ L0.

Then λ is called

(i) eIτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-feo set } is called the r-fuzzy e-interior of

λ.

(ii) eCτ (λ, r) =
∧
{µ ∈ IX : µ ≥ λ, µ is a r-fec set } is called the r-fuzzy e-closure of

λ.

Definition 2.15 [27] : Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η)

and r ∈ L0. Then F is called:

(i) Fuzzy upper almost e∗-continuous (FUAe∗-continuous, in short) at any L-fuzzy

point xt ∈ dom(F ) iff xt ∈ F u(µ) for each µ ∈ LY and η(µ) ≥ r, there exist r-fe∗o

set λ ∈ LX and xt ∈ λ such that λ ∧ dom(F ) ≤ F u(Iη(Cη(µ, r), r)).
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(ii) Fuzzy lower almost e∗-continuous (FLAe-continuous, in short) at any L-fuzzy

point xt ∈ dom(F ) iff xt ∈ F l(µ) for each µ ∈ LY and η(µ) ≥ r, there exist r-fe∗o

set λ ∈ LX and xt ∈ λ such that λ ≤ F l(Iη(Cη(µ, r), r)).

(iii) FUAe∗ -continuous (resp. FLAe∗-continuous) iff it is FUAe∗-continuous (resp.

FLAe∗-continuous) at every xt ∈ dom(F ).

3. Fuzzy Upper and Lower Weakly e∗-continuous Multifunctions

Definition 3.1 : Let F : X ( Y be a FM between two L-fts’s (X, τ), (Y, η) and

r ∈ L0. Then F is called.

(i) Fuzzy upper weakly e∗-continuous (FUWe∗-continuous, in short) at an L-fuzzy

point xt ∈ dom(F ) iff xt ∈ F u(µ) for each µ ∈ LY and η(µ) ≥ r, there exist

r-fe∗o-set λ ∈ LX and xt ∈ λ such that λ ∧ dom(F ) ≤ F u(Cη(µ, r)).

(ii) Fuzzy lower weakly e∗-continuous (FLWe∗-continuous, in short) at an L-fuzzy

point xt ∈ dom(F ) iff xt ∈ F l(µ) for each µ ∈ LY and η(µ) ≥ r, there exist

r-fe∗o-set λ ∈ LX and xt ∈ λ such that λ ≤ F l(Cη(µ, r)).

(iii) FUWe∗-continuous (resp. FLWe∗-continuous) iff it is FUWe∗-continuous (resp.

FLWe∗-continuous) at every xt ∈ dom(F ).

Proposition 3.1 : If F is normalized, then F is FUWe∗-continuous at an L-fuzzy

point xt ∈ dom(F ) iff xt ∈ F u(µ) for each µ ∈ LY and η(µ) ≥ r, there exists r-fe∗o-set

λ ∈ LX and xt ∈ λ such that λ ≤ F u(Cη(µ, r)).

Theorem 3.1 : Let F : X ( Y be a FM between two L-fts’s (X, τ) and (Y, η). Then

F is FLWe∗-continuous if and only if F l(µ) ≤ e∗Iτ (F l(Cη(µ, r)), r) for any µ ∈ LY

and η(µ) ≥ r.
Proof : Let F be FLWe∗-continuous, µ ∈ LY and η(µ) ≥ r. If xt ∈ F l(µ), then

there exixts r-fe∗o set λ ∈ LX and xt ∈ λ such that λ ≤ F l(Cη(µ, r)) and hence

λ ≤ e∗Iτ (F l(Cη(µ, r)), r). Thus F l(µ) ≤ e∗Iτ (Cη(µ, r), r).

Conversely, let xt ∈ dom(F ), µ ∈ LY , η(µ) ≥ r and xt ∈ F l(µ). Then

xt ∈ F l(µ) ≤ e∗Iη(F l(Cη(µ, r)), r) = λ (say).
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Thus, xt ∈ λ and λ is r-fe∗o set such that

λ = e∗Iτ (F l(Cη(µ, r)), r) ≤ F l(Cη(µ, r)).

Hence, F is FLWe∗-continuous. 2

Theorem 3.2 : Let F : X ( Y be a FM and normalized between two L-fts’s

(X, τ), (Y, η). Then F is FUWe∗-continuous if and only if F u(µ) ≤ e∗Iτ (F u(Cη(µ, r)), r)

for any µ ∈ LY and η(µ) ≥ r..
Proof : This can be proved in a similar way as the above Theorem 3.1 2

Remark 3.1 : The following implications hold.

(i) FUW -continuous ⇒ FUWe∗-continuous.

(ii) FLW -continuous ⇒ FLWe∗-continuous.

The converse of the above Remark 3.1 need not be true as shown by the following

examples.

Example 3.1 : Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM

defined by GF (x1, y1) = 0.8, GF (x1, y2) = 0.9, GF (x1, y3) = 0.8, GF (x2, y1) = 1,

GF (x2, y2) = 0.7, and GF (x2, y3) = 0.9. Let λ1 and λ2 be a fuzzy subsets of X be

defined as follows: λ1(x1) = 0.3, λ1(x2) = 0.1; λ2(x1) = 0.7, λ2(x2) = 0.7 and µ be

a fuzzy subset of Y defined as µ(y1) = 0.3, µ(y2) = 0.1, µ(y3) = 0.2. We assume that

1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,
1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,
1
2 , if µ = µ,

0, otherwise.

are fuzzy topologies on X and Y. For r = 1
2 , then F is FUWe∗-continuous but not

FUW -continuous because µ is 1
2 -fuzzy open set in Y , F u(Cη(µ, r)) = λ2 is not 1

2 -fuzzy

open set in X.

Example 3.2 : Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM

defined by GF (x1, y1) = 0.2, GF (x1, y2) = 1, GF (x1, y3) = 0, GF (x2, y1) = 0.5,

GF (x2, y2) = 0, and GF (x2, y3) = 0.3. Let λ1 and λ2 be a fuzzy subsets of X be

defined as follows: λ1(x1) = 0.4, λ1(x2) = 0.3; λ2(x1) = 0.9, λ2(x2) = 0.5 and µ be
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a fuzzy subset of Y defined as µ(y1) = 0.4, µ(y2) = 0.1, µ(y3) = 0.1. We assume that

1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,
1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,
1
2 , if µ = µ,

0, otherwise.

are fuzzy topologies on X and Y. For r = 1
2 , then F is FLWe∗-continuous but not

FLW -continuous because µ is 1
2 -fuzzy open set in Y , F l(Cη(µ, r)) = λ2 is not 1

2 -fuzzy

open set in X.

Remark 3.2 : The following implications hold.

(i) FUA-continuous ⇒ FUAe∗-continuous.

(ii) FLA-continuous ⇒ FLAe∗-continuous.

The converse of the above Remark ?? need not be true as shown by the following

example.

Example 3.3 : Let X = {x1, x2}, Y = {y1, y2, y3} and F : X ( Y be a FM

defined by GF (x1, y1) = 0.1, GF (x1, y2) = 1, GF (x1, y3) = 0, GF (x2, y1) = 0.5,

GF (x2, y2) = 0, and GF (x2, y3) = 1. Let λ1 and λ2 be a fuzzy subsets of X be defined

as λ1(x1) = 0.3, λ1(x2) = 0.5; λ2(x1) = 0.5, λ2(x2) = 0.5, µ1 and µ2 be a fuzzy subsets

of Y defined as µ1(y1) = 0.5, µ1(y2) = 0.5, µ1(y3) = 0.5 and µ2(y1) = 0.4, µ2(y2) = 0.4,

µ2(y3) = 0.4. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies τ : LX → L

and η : LY → L as follows:

τ(λ) =


1, if λ = 0 or 1 ,
1
2 , if λ = λ1,

0, otherwise,

η(µ) =


1, if µ = 0 or 1 ,
1
2 , if µ = µ1, µ2,

0, otherwise.

are fuzzy topologies on X and Y. For r = 1
2 , then F is

(i) FUAe-continuous but not FUA-continuous because µ1 is 1
2 -fro set in Y , F u(µ1) = λ2

is not 1
2 -fuzzy open set in X.

(ii) FLAe-continuous but not FLA-continuous because µ1 is 1
2 -fro set in Y , F l(µ1) = λ2

is not 1
2 -fuzzy open set in X.

Theorem 3.3 : Let {Fi}i∈Γ be a family of FLAe∗-continuous between two L-fts’s

(X, τ) and (Y, η). Then
⋃
i∈Γ

Fi is FLAe∗-continuous.
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Proof : Let µ ∈ LY , then

(
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ

(F li (µ)),

by Theorem 2.3 (ii). Since {Fi}i∈Γ is a family of FLAe∗-continuous between two L-

fts’s (X, τ) and (Y, η), then F li (µ) is r-fe∗o set for any r-fro set µ and each i ∈ Γ.

Then, we have (
⋃
i∈Γ

Fi)
l(µ) =

∨
i∈Γ

(F li (µ)) is r-fe∗o set for any r-fro set µ. Hence
⋃
i∈Γ

Fi is

FLAe∗-continuous. 2

Theorem 3.4 : Let F1 and F2 be two normalized FUAe∗-continuous between two

L-fts’s (X, τ) and (Y, η). Then F1 ∪ F2 is FUAe∗-continuous.

Proof : Let µ ∈ LY , then (F1∪F2)u(µ) = F u1 (µ)∧F u2 (µ) by Theorem 2.3(iii). Since F1

and F2 be two normalized FUAe∗-continuous between two L-fts’s (X, τ) and (Y, η),

then F ui (µ) is r-fe∗o-set for any r-fro set µ and i ∈ {1, 2}. Then, we have (F1∪F2)u(µ) =

F u1 (µ)∧F u2 (µ) is r-fe∗o-set for each r-fro set µ. Hence F1 ∪F2 is FUAe∗-continuous. 2

Theorem 3.5 : Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F is FLe∗-continuous and H is FLA-continuous, then

H ◦ F is FLAe∗-continuous.

Proof : Let ν ∈ LZ , ν is r-fro set. Since H is FLA-continuous, then from Definition

2.11, H l(ν) is r-fuzzy open set in Y. Also, F is FLe∗-continuous F l(H l(ν)) is r-fe∗o set in

Y. Hence, we have (H ◦F )l(ν) = F l(H l(ν)) is r-fe∗o. Thus H ◦F is FLAe∗-continuous.

2

Theorem 3.6 : Let F : X ( Y and H : Y ( Z be two FM’s and let (X, τ), (Y, η)

and (Z, δ) be three L-fts’s. If F and H are normalized, F is FUe∗-continuous and H

is FUA-continuous, then H ◦ F is FUAe∗-continuous.

Proof : Proof is similar to the above Theorem 3.5. 2
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