International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 12 No. I (April, 2018), pp. 69-78

# ON THE SPLIT EDGE GEODETIC NUMBER IN GRAPHS 

SHOBHA ${ }^{1}$ AND VENKANAGOUDA M. GOUDAR ${ }^{2}$<br>${ }^{1}$ Research Scholar, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India<br>${ }^{2}$ Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India


#### Abstract

An edge geodetic set $S \subseteq V$ is said to be a split edge geodetic set if the subgraph $G[V-S]$ induced by $V-S$ is disconnected. The minimum cardinality of a split edge geodetic set of $G$ is the split edge geodetic number and is denoted by $g_{1 s}(G)$. In this paper, we initiate the study of $g_{1 s}(G)$ in terms of vertices, edges and different parameters. Further we determine bounds for the split edge geodetic number of cartesian product, corona.


## 1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of $G$ are denoted by $n$ and $m$ respectively. For vertices $u$ and $v$ in a connected graph, the distance $d(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of a shortest $u-v$ path in $G$. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. It is known that this distance is a metric on

Key Words : Edge geodetic set, Split geodetic Set, Split edge geodetic set.
2012 AMS Subject Classification : 05CS12.
(c) http: //www.ascent-journals.com

UGC approved journal (Sl No. 48305)
the vertex set $V(G)$. For any vertex $u$ of $G$, the eccentricity of $u$ is $e(u)=\max \{d(u, v)$ : $v \in V\}$. The radius $\operatorname{rad} G$ and diameter $\operatorname{diam} G$ are defined by $\operatorname{rad} G=\min \{e(v): v \in$ $V\}$ and $\operatorname{diam} G=\max \{e(v): v \in V\}$ respectively. A geodetic set of $G$ is a set $S \subseteq V$ such that every vertex of $G$ is contained in a geodesic joining some pair of vertices in $S$. The geodetic number $g(G)$ is the minimum order of its geodetic sets. This concept was introduced in [2]. A vertex $v$ is an extreme vertex of a graph $G$ if the subgraph induced by its neighbours is complete. A friendship graph $F_{n}$ is obtained by joining n copies of the cycle graph $C_{3}$ with a common vertex. An extreme vertex is a vertex $v$ if the subgraph induced by its neighbours is complete. The cartesian product of two graphs $G$ and $H$, written as $G \square H$, is the graph with vertex set $V(G) \square V(H)$, where two distinct vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ being adjacent in $G \square H$ if and only if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E(H)$, or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E(G)$. Let $G_{1}$ and $G_{2}$ be the graphs of order $n_{1}$ and $n_{2}$ respectively. The corona of two graphs $G_{1}$ and $G_{2}$ is the graph $G_{1} \circ G_{2}$ obtained by taking one copy of $G_{1}$ and $n_{1}$ copies of $G_{2}$ and then joining the ith vertex of $G_{1}$ to every vertex of the ith copy of $G_{2}$. A set $S \subseteq V(G)$ is called an edge geodetic set of $G$ if every edge of $G$ is contained in a geodesic joining some pair of vertices in $S$. The edge geodetic number $g_{1}(G)$ of $G$ is the minimum cardinality of its edge geodetic set. This concept was introduced in [4]. A geodetic set $S \subseteq V$ is said to be split geodetic set if the subgraph $G[V-S]$ induced by $V-S$ is disconnected. The minimum cardinality of a split geodetic set of $G$ is the split geodetic number and is denoted by $g_{s}(G)$. This concept was introduced in [6].

## 2. Split Edge Geodetic Number of a Graph

We now define the Split Edge Geodetic Number of a graph.

Definition 2.1 : An edge geodetic set $S \subseteq V$ is said to be a split edge geodetic set if the subgraph $G[V-S]$ induced by $V-S$ is disconnected. The minimum cardinality of a split edge geodetic set of $G$ is the split edge geodetic number and is denoted by $g_{1 s}(G)$.

Example 2.2: For a connected graph $G$ given in Figure 1, $S=\left\{v_{1}, v_{4}, v_{5}, v_{7}\right\}$ is the split edge geodetic set for $G$ so that $g_{1 s}(G)=4$.


Figure 1: G
Remark 2.3: For a graph $G$ given in Figure 2, $S=\left\{v_{1}, v_{2}, v_{5}\right\}$ is an edge geodetic set of $G$ so that $g_{1}(G)=3$. Since $V-S$ is connected, $S$ is not split edge geodetic number. Let $S_{0}=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$. Clearly, $S_{0}$ is split edge geodetic number of a graph so that $g_{1 s}(G)=4$. Thus edge geodetic number and split edge geodetic number of a graph are different.


Figure 2: G

## 3. Preliminary Notes

We need the following theorems to prove further results.
Theorem 3.1 [4] : For any tree $T$, the edge geodetic number $g_{1}(T)$ equals the number of end vertices in $T$. In fact, the set of all end vertices of $T$ is the unique edge geodetic basis of $T$.

Theorem 3.2 [4]: For any graph $G$ of order $p, 2 \leq g_{1}(G) \leq p$.
Theorem 3.3 [6]: For any cycle $C_{n}$ with $n>3$

$$
g_{s}\left[C_{n}\right]= \begin{cases}2 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd }\end{cases}
$$

Theorem 3.4 [6]: For any Path $P_{n}, n \geq 5, g_{s}\left[P_{n}\right]=3$.
Theorem 3.5 [5] : For integers $m \geq n \geq 2, g_{1}\left(K_{m} \square K_{n}\right)=m n-n$.
The succeeding are direct results on split edge geodetic number of graphs.

## Theorem 3.6 :

1. Let $C_{n}$ be a cycle of order $n, n \geq 3$, then

$$
g_{1 s}\left[C_{n}\right]= \begin{cases}2 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd }\end{cases}
$$

2. For any path $P_{n}, g_{1 s}\left[P_{n}\right]=3$.
3. Each extreme vertex of a connected graph $G$ belongs to every split edge geodetic set of $G$. In particular, each end vertex of $G$ belongs to every split edge geodetic set of $G$.

Proof : 1. For cycle $C_{n}$ proof is obvious from Theorem 3.3.
2. By Theorem 3.4, the proof is obvious.
3. By Theorem 3.1, each end vertex of a connected graph $G$ belongs to every edge geodetic set. Therefore each extreme vertex of a connected graph $G$ belongs to every split edge geodetic set of $G$.

## 4. Main Results

Theorem 4.1: Let $r, s$ be any integers and $G=K_{r, s}$, then $g_{1 s}(G)=\min \{r, s\}$.
Proof: Let $A=\left\{a_{1}, a_{2}, \cdots, a_{r}\right\}$ and $B=\left\{a_{1}^{\prime}, a_{2}^{\prime} \cdots, a_{s}^{\prime}\right\}$ be the bipartition of $G$ and $V=A \cup B$ where $r \leq s$. Consider $S=A$, since every vertex $a_{k}^{\prime}, 1 \leq k \leq s$ lies on the $a_{i}-a_{j}$ geodesic for $1 \leq i \neq j \leq r$ then $S$ is a split edge geodetic edge of $G$ as $\mathrm{V}-S$ is disconnected. Suppose $W=\left\{a_{1}, a_{2}, \cdots, a_{r-1}\right\}$ be the set of vertices such that $|W|<|S|$. Since $a_{r} \in I[W]$, then $W$ is not a split edge geodetic set of $G$. Clearly $S$ is the minimum split edge geodetic set of $G$. Therefore $g_{1 s}(G)=\min \{r . s\}$.

Theorem 4.2: For a complete graph $K_{n}$, a wheel $W_{n}$ and a star $K_{1, s}$, there is no split edge geodetic number.
Proof: (1) Let $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be the vertex set of $K_{n}$ and $d\left(u_{i}, v_{j}\right)=1$ in $K_{n}$. Let $S=V\left(K_{n}\right)$. Clearly the set $S$ of all vertices of $G$ is an edge geodetic cover of $G$ so that $g_{1}(G)=n$. Then $V-S=\phi$. Therefore there is no split edge geodetic set for $K_{n}$.
(2) Let $W_{n}$ be a wheel with $V(W n)=\left\{w_{1}, w_{2}, \cdots, w_{n}, x\right\}$. Let $S=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be the edge geodetic set of $W_{n}$ so that $g_{1}\left(W_{n}\right)=n-1$. Clearly $V-S$ is always connected. Hence there is no split edge geodetic set for $W_{n}$.
(3) By the Theorem $4.1 g_{1 s}\left(K_{1, s}\right)=1$. Therefore there is no split edge geodetic set for $K_{1, s}$.

Theorem 4.3: Let $T$ be a tree with k end vertices and atleast three internal vertices, then $g_{1 s}[T]=g_{1}(T)+1$.
Proof: Since by Theorem 3.1, we have $g_{1}(T)=k$. Let $S=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ be the set containing end vertices of $T$ and $S$ itself is the minimum edge geodetic set of $T$. But $V-S$ is connected which is a contradiction. Let $S^{\prime}=S \cup \epsilon$ where $\epsilon$ is any internal vertex of $T$ such that it is not any supporting vertex of $T$. Clearly $V-S^{\prime}$ is disconnected and hence $S^{\prime}$ is split edge geodetic set. Therefore $g_{1 s}[T]=k+1=g_{1}(T)+1$.
Theorem 4.4: For a connected graph $G$ of order $n$ and diameter $d \geq 4, g_{1 s}(G) \leq$ $n-d+2$.

Proof : Let $x$ and $y$ be any two vertices of $G$ such that $d(x, y)=d$. Let $P$ : $x=x_{0}, x_{1}, x_{2}, \cdots, x_{d}=y$ be the diametral path of length $d$. Let $S=V(G)-$ $\left\{x_{1}, x_{2}, \cdots, x_{d-1}\right\}$. Then $I[S]=V(G)$ and $V-\left(S \cup\left\{v_{2}\right\}\right)$ is disconnected. Therefore

$$
\begin{aligned}
g_{1 s}(G) & \leq|S|+1 \\
& =n-(d-1)+1 \\
& =n-d+2 .
\end{aligned}
$$

Theorem 4.5 : Let $T$ be a tree with atleast three internal vertices, then $2 g_{1 s}(T)-$ $g_{1}(T) \leq m$.

Proof: Let $S=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{k}\right\}$ be the set formed by the end vertices of $T$ which is the minimum edge geodetic set of $T$. Let $V^{\prime}=\left\{v_{i} / 2 \leq i \leq k-1\right\}$. Let $S^{\prime}=$
$S \cup\left\{v_{i}\right\}$, where $v_{i}$ be any internal vertex which is not support vertex. Clearly $V-S^{\prime}$ is disconnected and forms a minimal split edge geodetic set of $T$. Then it follows that $2\left|S^{\prime}\right|-|S| \leq m$. Hence $2 g_{1 s}(T)-g_{1}(T) \leq m$.
Theorem 4.6: Let $G$ be a connected graph of order $n \geq 5$. Then $3 \leq g_{1 s}(G) \leq n-2$ and $g_{1 s}(G)=2$ if $G=C_{n}$ where $n$ is even or $G=K_{2, s}$.
Proof: By Theorem $3.2 g_{1}(G) \geq 2$. But for a split edge geodetic cover needs atleast three vertices and therefore $g_{1 s}(G) \geq 3$. Thus $3 \leq g_{1 s}(G) \leq n-2$. Further by Theorem 3.6, $g_{1 s}\left(C_{n}\right)=2$ when $n$ is even and by Theorem 4.1, $g_{1 s}\left(K_{2, s}\right)=2$.

## 5. Cartesian Product

Theorem 5.1: Let $G=P_{n_{1}}$ and $H=K_{1, n_{2}}$ then

$$
g_{1 s}(G \square H)=\left\{\begin{array}{l}
n_{2}+1 \quad \text { when } n_{1}=2,3,4 \text { and } n_{2}>2 \\
n_{2}+2 \quad \text { when } n_{1}>4 \text { and } n_{2} \geq 2
\end{array} .\right.
$$

Proof: We shall discuss the following cases :
Case 1: For $n_{1}=2,3,4$. Let $S=\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right.$ for $i=n_{1}$ and $2 \leq j \leq n_{2}-1$ where $\left(u_{i}, v_{j}\right)$ is the vertex choosen from $n_{1}$ copy of $K_{1, n_{2}}$ such that $d\left(\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right)=$ $\operatorname{diam}(G \square H)$. Clearly $S$ is an edge geodetic set and $V-S$ is connected. Let $S^{\prime}=S \cup\left\{w_{1}\right\}$ where $w_{1}$ is the vertex which was the internal vertex of $K_{1, n_{2}}$ and it lies in $\left(n_{1}-1\right)^{t h}$ copy of $K_{1, n_{2}}$ in $G \square H$ be the set such that $V-S^{\prime}$ is disconnected. Hence $S^{\prime}$ is the split edge geodetic set of $G \square H$. Thus

$$
\begin{aligned}
g_{1 s}(G \square H) & =\left|S^{\prime}\right| \\
& =|S|+\left\{w_{1}\right\} \\
& =n_{2}+1 .
\end{aligned}
$$

Case 2: For $n_{1}>4$ and $n_{2}>2$. Let $S=\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right\}$ for $i=n_{1}$ and $2 \leq j \leq n_{2}-1$ where $\left(u_{i}, v_{j}\right)$ is the vertex choosen from $n_{1}$ copy of $K_{1, n_{2}}$ such that $d\left(\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right)=$ $\operatorname{diam}(G \square H)$. Clearly $S$ is an edge geodetic set and $V-S$ is connected. Let $S^{\prime}=$ $S \cup\left\{w_{1}\right\} \cup\left\{w_{2}\right\}$ where $w_{1}$ is the vertex which was the internal vertex of $K_{1, n_{2}}$ and it lies in $\left(n_{1}-1\right)^{t h}$ copy of $K_{1, n_{2}}$ in $G \square H$ and $w_{2}$ is the vertex which was the pendant vertex of $K_{1, n_{2}}$ not in $S$ and lies in $n_{1}^{\text {th }}$ copy of $K_{1, n_{2}}$ in $G \square H$ be the set such that $V-S^{\prime}$ is
disconnected. Thus $S^{\prime}$ is the split edge geodetic set of $G \square H$. Therefore

$$
\begin{aligned}
g_{1 s}(G \square H) & =\left|S^{\prime}\right| \\
& =|S|+\left\{w_{1}\right\}+\left\{w_{2}\right\} \\
& =n_{2}+2 .
\end{aligned}
$$

Theorem 5.2: Let $C_{n_{1}}, n_{1} \geq 4$ be any cycle and $P_{n_{2}}$ be any path and $n_{1} \geq n_{2}$. Then

$$
g_{1 s}\left(C_{n_{1}} \square P_{n_{2}}\right)=\left\{\begin{array}{ll}
4 & \text { if } n_{1} \geq 3 \text { is even, } n_{2} \geq 3 \\
5 & \text { if } n_{1}=n_{2} \text { and is odd } \\
6 & \text { if } n_{1} \geq 7,9,11, \cdots, 3 n_{1}+4
\end{array} .\right.
$$

Proof: Consider $G=C_{n_{1}} \square P_{n_{2}}$. Let $G$ be the graph obtained by $n_{1}$ copies of $P_{n_{2}}$. Let $V=\left\{v_{1}, v_{2}, \cdots, v_{n_{1}}\right\}$ and $W=\left\{w_{1}, w_{2}, \cdots, w_{n_{2}}\right\}$ be the vertex set of $C_{n_{1}}$ and $P_{n_{2}}$ respectively. Then $U=V \cup W$. We discuss the following cases:
Case 1: Let $S=\left\{\left(v_{1}, w_{1}\right),\left(v_{i}, w_{j}\right)\right\}$ where $d\left\{\left(v_{1}, w_{1}\right),\left(v_{i}, w_{j}\right)\right\}=\operatorname{diam}(G)$ be the edge geodetic set of $G$. But $V-S$ is connected. Consider $S^{\prime}=S \cup\left\{\left(v_{2}, w_{2}\right),\left(v_{3}, w_{1}\right)\right\}$. Clearly $V-S^{\prime}$ is disconnected so that $S^{\prime}$ is the minimum split edge geodetic set of $G$. Hence $g_{1 s}(G)=\left|S^{\prime}\right|=4$.

Case 2: Let $S=\left\{\left(v_{1}, w_{1}\right),\left(v_{i}, w_{j}\right),\left(v_{n_{1}} w_{n_{2}}\right)\right\}$ be the edge geodetic set of $G$ such that $d\left\{\left(v_{1}, w_{1}\right),\left(v_{i}, w_{j}\right)\right\}=d\left\{\left(v_{i}, w_{j}\right),\left(v_{n_{1}}, w_{1}\right)\right\}=\operatorname{diam}(G)$. Thus $I(S)=U$ and $V-S$ is connected. Consider $S^{\prime}=S \cup\left\{\left(v_{2}, w_{2}\right),\left(v_{3}, w_{1}\right)\right\}$. Clearly $V-S^{\prime}$ is an induced subgraph which has two components. Hence $S^{\prime}$ is the minimum split edge geodetic set of $G$. Therefore $g_{1 s}(G)=\left|S^{\prime}\right|=5$.
Case 3: Consider $S=\left\{\left(v_{1}, w_{1}\right),\left(v_{i}, w_{j}\right),\left(v_{n_{1}}, w_{n_{2}}\right),\left(v_{n_{1}}, w_{1}\right)\right\}$ be the edge geodetic set of $G$ such that $d\left\{\left(v_{1}, w_{1}\right),\left(v_{i}, w_{j}\right)\right\}=d\left\{\left(v_{i}, w_{j}\right),\left(v_{n_{1}}, w_{1}\right)\right\}=\operatorname{diam}(G)$. Thus $V-S$ is connected. Consider $S^{\prime}=S \cup\left\{\left(v_{2}, w_{2}\right),\left(v_{3}, w_{1}\right)\right\}$. Clearly $V-S^{\prime}$ is disconnected and hence $S^{\prime}$ is the minimum split edge geodetic set of $G$. Therefore $g_{1 s}(G)=\left|S^{\prime}\right|=6$.
Theorem 5.3: For integers $m \geq n \geq 2, g_{1 s}\left(K_{m} \square K_{n}\right)=g_{1}\left(K_{m} \square K_{n}\right)$.
Proof: The proof follows from Theorem 3.5.
Observation 5.4 : Let $T$ be the tree of order $n \geq 2$ with $p$ number of end vertices. Consider $H_{x}$ as the copy of $K_{n}$ in $T \square K_{n}$ with respect to an end vertex $x$ of $T$. Then every geodesic contains an edge $e$ where $e \in E\left(H_{x}\right)$.

Theorem 5.5 : Let $p$ be the end vertices of non-trivial tree $T$ and $n \geq 2$. Then $g_{1 s}\left[T \square K_{n}\right]=p n-p+1$ for $p \leq n$.

Proof : Let $G=T \square K_{n}$ be the cartesian product of non-trivial tree $T$ and complete graph $K_{n}$. Consider $V\left(K_{n}\right)=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and $V(T)=\left\{x_{1}, x_{2}, \cdots, x_{p}\right\}$.
Let $S$ be the minimum edge geodetic set of $G$. Let the copy of $K_{n}$ corresponding to the end vertex $x$ of $T$ be $H_{x}$. Now, let us claim that $\left|S \cap V\left(H_{x}\right)\right| \geq n-1$.
In contrary, if $\left|S \cap V\left(H_{x}\right)\right|<n-1$, then there should exist atleast two vertices $\left(x, y_{1}\right),\left(x, y_{2}\right)$ that are not in $S$. Since there is an isomorphism between $H_{x}$ and $K_{n}$, it follows that $\left(x, y_{1}\right),\left(x, y_{2}\right)$ is an edge of $H_{x}$. Since $S$ is an edge geodetic set of $G$, then by the Observtaion $5.4\left(x, y_{1}\right) \in S$ or $\left(x, y_{2}\right) \in S$, a contradiction. Thus $\left|S \cap V\left(H_{x}\right)\right| \geq n-1$. Since $T$ has $p$ end vertices, therefore $g_{1 s}\left[T \square K_{n}\right]=p n-p$. But $V-S$ is connected. Let $S^{\prime}=S \cup\left(x_{2}, a_{4}\right)$ where $\left(x_{2}, a_{4}\right)$ is a vertex in the second copy of $G$ which is adjacent to $\left(x_{1}, a_{4}\right)$ of first copy. Then $V-S$ is disconnected. Hence $g_{1 s}(G)=\left|S^{\prime}\right|=p n-p+1$.

## 6. Corona

Theorem 6.1: The corona for split edge geodetic number of path $P_{n_{1}}, n_{1} \geq 3$ and path $P_{n_{2}}, n_{2} \geq 2$ is $g_{1 s}\left(P_{n_{1}} \circ P_{n_{2}}\right)=n_{1} n_{2}+1$.
Proof : Let $G=P_{n_{1}} \circ P_{n_{2}}$ be the corona of paths $P_{n_{1}}$ and $P_{n_{2}}$ respectively. Let $B_{1}=\left\{b_{1}, b_{2}, b_{3}, \cdots, b_{n_{1}}\right\}$ be block set such that $V_{1}\left(b_{i}(G)\right)=\left\{\left(u_{1}, w_{i}\right),\left(u_{2}, w_{i}\right),\left(u_{3}, w_{i}\right)\right.$, $\left.\cdots,\left(u_{n_{2}}, w_{i}\right), w_{i}\right\}$ where $\left\{u_{1}, u_{2}, \cdots, u_{n_{2}}\right\} \in V\left(P_{n_{2}}\right)$ and $w_{i} \in V\left(P_{n_{1}}\right)$ for $1 \leq i \leq n_{1}$ are the vertex sets of $P_{n_{2}}$ and $P_{n_{1}}$ respectively. Let $B_{2}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}, \cdots, b_{n-1}\right.$ be the block set such that $V\left[b_{j}^{\prime}\right]=\left\{\left(w_{i}, w_{i+1}\right)\right\}$. Let $S=V\left[b_{i}\right]$ be the edge geodetic set. But $V-S$ is connected, so $S$ is not split edge geodetic set. Now, consider $S^{\prime}=S \cup\left\{w_{k}\right\}, 1<k<n_{1}$. Clearly $V-S^{\prime}$ is an induced subgraph which has two components. Hence $S^{\prime}$ is split edge geodetic set. Thus

$$
\begin{aligned}
g_{1 s}(G) & =\left|S^{\prime}\right| \\
& =|S|+\left|\left\{w_{k}\right\}\right| \\
& =n_{1} n_{2}+1 .
\end{aligned}
$$

Theorem 6.2: Let $G=F_{n_{1}}, n_{1} \geq 2$ be a friendship graph and $H=P_{n_{2}}$ be a path of order $n_{2}, n_{2}>3$. Then $g_{1 s}(G \circ H)=n_{2}\left(n_{1}-1\right)+1$.
Proof: Consider $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{2 n_{1}+1}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{3 n_{1}}\right\}$ be the
vertex and edge set of friendship graph $F_{n}$. Let $V(H)=\left\{u_{1}, u_{2}, \cdots, u_{n_{2}}\right\}$ be the vertex set of path $P_{n_{2}}$. Then $V(G \circ H)=V(G) \cup V(H)$. Let $S=\left\{w_{1}, w_{2}, \cdots, w_{n_{2}}\right\}$ where $\left\{w_{1}\right\}$ corresponds to vertex set of $F_{n_{1}}$ of first copy of $P_{n_{2}},\left\{w_{2}\right\}$ corresponds to vertex set of $F_{n_{2}}$ of second copy of $P_{n_{2}}, \cdots, w_{n_{2}}$ corresponds to vertex set of $F_{2 n_{1}+1}$ of $\left(2 n_{1}+1\right)^{t h}$ copy of $P_{n_{2}}$ excluding the common vertex to which $n_{1}$ copies of cycle graph $C_{3}$ is joined. Clearly $S$ is an edge geodetic set. But $V-S$ is connected. Now choose vertex $\left\{u_{k}\right\}$, the internal vertex of one copy of $P_{n_{2}}$ and $S^{\prime}=S \cup\left\{v_{k}\right\}$ forms minimum split edge geodetic set of $G \circ H$ in which $V(G \circ H)-S^{\prime}$ is disconnected. Hence

$$
\begin{aligned}
g_{1 s}(G \circ H) & =\left|S^{\prime}\right| \\
& =|S|+\left|\left\{u_{k}\right\}\right| \\
& =n_{2}\left(n_{1}-1\right)+1 .
\end{aligned}
$$

Corollary 6.3: Let $G=P_{n_{1}} \circ C_{n_{2}}$ be the corona of path $P_{n_{1}}$ and $C_{n_{2}}, n_{2}>2$. Then $g_{1 s}(G)=n_{1} n_{2}+1$.
Corollary 6.4: Let $G=C_{n_{1}} \circ C_{n_{2}}$ be the corona of cycle $C_{n_{1}}$ and $C_{n_{2}}, n_{1} \leq n_{2}$. Then $g_{1 s}(G)=n_{1} n_{2}+2$.

## 7. Conclusion

In this paper we determine the split edge geodetic number for some graphs, cartesian product, corona and also we obtain the relation between edge geodetic and split edge geodetic number.

## References

[1] Buckley F. and Harary F., Distance in Graphs, Addison -Wesley, Redwood city, CA, (1990).
[2] Chartrand G., Harary F. and Zhang P., On the geodetic number of a graph, Net-works, 39 (2002) 1-6.
[3] Harary F., Graph Theory, Addison-Wesley, (1969).
[4] Santhakumaran A. P. and John J., Edge geodetic number of a graph, Journal of Discrete Mathematical Sciences and Cryptograph, 10(3)(2007), 415-432.
[5] Santhakumaran A. P. and Ullas Chandran S. V., The edge geodetic number and cartesian product of graphs, Discussions Mathematicae, Graph theory, 30 (2010), 55-73.
[6] Venkanagouda M. Goudar, Ashalatha K. S. and Venkatesha, Split geodetic number of graphs, Journal of Advances and Applications in Discrete Mathematics, 13(1) (2014), 9-22.

