DEGREE EQUITABLE CO-ISOLATED LOCATING DOMINATION IN GRAPHS

N. MEENAL ${ }^{1}$ AND S. MUTHAMMAI ${ }^{2}$
${ }^{1}$ Assistant Professor, PG \& Research Department of Mathematics, J. J. College of Arts \& Science (Autonomous), Pudukkottai . 622 422, Tamil Nadu, India
${ }^{2}$ Principal, Alagappa Government Arts College, Karaikudi . 630 003, Tamil Nadu, India

Abstract

Let $G(V, E)$ be a connected graph. A dominating set $S \subseteq V$ is called a co-isolated locating dominating set, if for any two vertices $v, w \in V-S, N(v) \cap S \neq N(w) \cap S$ and there exists atleast one isolated vertex in $\langle V-S\rangle$. A dominating set $S \subseteq V$ is called a degree equitable dominating set, if for every $u \in V-S$, there exists a vertex $v \in S$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$, where $\operatorname{deg}(u)$ is the degree of u in G and $\operatorname{deg}(v)$ is the degree of v in G. A dominating set $S \subseteq V$ is called a degree equitable co-isolated locating dominating set if it is both degree equitable dominating set and co-isolated locating dominating set. The minimum cardinality of a degree equitable co-isolated locating dominating set is called the degree equitable co-isolated locating domination number and is denoted by $\gamma_{c l i d}^{e}$. This paper aims at the study of this new parameter for connected graph G.

1. Introduction

Let $G=(V, E)$ be a simple graph of order p. For any $v \in V(G)$, the neighborhood

Key Words : Degree equitable dominating set, Co-isolated locating dominating set and Degree equitable co-isolated locating dominating set.

AMS Subject Classification : 05C69.
(c) http: //www.ascent-journals.com

UGC approved journal (Sl No. 48305)
$N_{G}(v)$ (or simply $N(v)$) of v is the set of all vertices adjacent to v in G. A non-empty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in $V(G)-S$ is adjacent to atleast one vertex in S.

A new type of domination known as Degree Equitable Domination introduced by Swaminathan [9]. A dominating set $S \subseteq V$ is called a degree equitable dominating set, if for every $u \in V-S$, there exists a vertex $v \in S$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$, where $\operatorname{deg}(u)$ is the degree of u in G and $\operatorname{deg}(v)$ is the degree of v in G. If S is a degree equitable dominating set, then any super set of S is also a degree equitable dominating set. The degree equitable domination number γ_{d}^{e} is the minimum cardinality of a degree equitable dominating set.

A special case of domination called a locating domination is defined by Rall and Slater [8]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices $v, w \in V(G)-S, N_{G}(v) \cap S$ and $N_{G}(w) \cap S$ are distinct. The locating domination number $\gamma_{L}(G)$ of G is defined as the minimum number of vertices of a locating dominating set in G.

Muthammai and Meenal [3] introduced the concept of co-isolated locating dominating set. A locating dominating set $S \subseteq V(G)$ is called a co-isolated locating dominating set, if $\langle V-S\rangle$ contains atleast one isolated vertex. The minimum cardinality of a co-isolated locating dominating set is called the co-isolated locating domination number and is denoted by $\gamma_{\text {cild }}(G)$.

A dominating set with $\gamma(G)$ number of vertices is called a γ-set of G. Similarly, $\gamma_{\text {cild }}$-set, γ_{d}^{e}-set and $\gamma_{c l i d}^{e}$-set are defined.

In this paper, we introduce the concept of degree equitable locating dominating set and it is studied for the connected graphs.

2. Prior Results

Let G be a graph on p vertices and q edges.
Theorem 2.1 [3]: For every non-trivial graph $G, 1 \leq \gamma_{\text {cild }}(G) \leq p-1$.
Theorem $2.2[3]: \gamma_{c i l d}(G)=1$ if and only if $G \cong K_{2}$.
Theorem $2.3[3]: \gamma_{\text {cild }}\left(K_{p}\right)=p-1$, where K_{p} is a complete graph.

Theorem $2.4[4]$: For the path P_{p} and cycle $C_{p}(p \geq 3)$,

$$
\gamma_{c i l d}\left(P_{p}\right)=\gamma_{c i l d}\left(C_{p}\right)=\left\lceil\frac{2 p}{5}\right\rceil
$$

Theorem $2.5[4]$: For the Wheel $W_{p}(p \geq 6)$,

$$
\gamma_{c i l d}\left(W_{p}\right)=\left\lceil\frac{2 p+1}{5}\right\rceil
$$

Theorem $2.6[4]$: For the Triangular Snake Graph $T_{p}(p \geq 6)$,

$$
\gamma_{c i l d}\left(T_{p}\right)=\left\lfloor\frac{2 p+5}{5}\right\rfloor
$$

Theorem 2.7 [5] : If S is a co-isolated locating dominating set of $G(V, E)$ with $|S|=k$, then $V(G)-S$ contains atmost $p C_{1}+p C_{2}+\cdots+p C_{k}$ vertices.
Theorem 2.8 [7] : For the complete graph $K_{p}, \gamma_{d}^{e}\left(K_{p}\right)=1$.
Theorem $2.9[7]$: For the path P_{p} and cycle $C_{p}(p \geq 3)$,

$$
\gamma_{d}^{e}\left(P_{p}\right)=\gamma_{d}^{e}\left(C_{p}\right)=\left\lceil\frac{p}{3}\right\rceil
$$

3. Main Results

3.1 Preliminary Definitions

Definition 3.1.1 : A dominating set $S \subseteq V$ is called a degree equitable co-isolated locating dominating set, if it is both degree equitable and co-isolated locating dominating set. The degree equitable locating domination number $\gamma_{c i l d}^{e}$ is the minimum cardinality of a degree equitable co-isolated locating dominating set.

Remark 3.1.2 : Since every degree equitable co-isolated locating dominating set is a degree equitable dominating set, co-isolated locating dominating set, locating dominating set and also a dominating set,

$$
\gamma_{d}^{e}(G) \leq \gamma_{c i l d}^{e}(G), \gamma_{c i l d}(G) \leq \gamma_{c i l d}^{e}(G), \gamma_{L}(G) \leq \gamma_{c i l d}^{e}(G), \gamma_{L}(G) \leq \gamma_{c i l d}^{e}(G)
$$

Illustration 3.1.3 : Consider the graph G as shown in Figure 3.1.4.

Figure 3.1.4.

$$
\begin{array}{ll}
\left\{v_{2}, v_{5}\right\} \text { is a } \gamma-\text { set of } G \text { and } & \gamma(G)=2 . \\
\left\{v_{2}, v_{3}, v_{6}, v_{8}\right\} \text { is a } \gamma_{c i l d} \text { - set of } G \text { and } & \gamma_{c i l d}(G)=4 . \\
\left\{v_{2}, v_{3}, v_{6}, v_{8}\right\} \text { is a } \gamma_{d}^{e} \text {-set of } G \text { and } & \gamma_{d}^{e}(G)=4 . \\
\left\{v_{1}, v_{3}, v_{5}, v_{7}, v_{8}\right\} \text { is a } \gamma_{\text {cild }}^{e} \text {-set of } G \text { and } & \gamma_{c i l d}^{e}(G)=5 .
\end{array}
$$

Therefore $\gamma(G) \leq \gamma_{\text {cild }}(G) \leq \gamma_{\text {cild }}^{e}(G)$ and $\gamma(G) \leq \gamma_{d}^{e}(G) \leq \gamma_{c i l d}^{e}(G)$..

3.2 Existence of Degree Equitable Co-isolated Locating Dominating Sets

There are certain classes of graphs for which degree equitable co-isolated locating dominating sets does not exist.
Illustration 3.2.1: For the Bipartite Graph $K_{m, n}$ with $|m-n| \geq 2, \gamma_{\text {cild }}^{e}$-sets does not exist. In particular for the star $K_{1, p}$ with $p \geq 3,|\operatorname{deg}(u)-\operatorname{deg}(v)|=p-1 \geq 1$ for all $u, v \in V\left(K_{1, p}\right)$ and $u v \in E\left(K_{1, p}\right)$.
Definition 3.2.2 : A subdivision of an edge $u v$ in a graph G is obtained by removing the edge $u v$, adding a new vertex w and adding edges $u w$ and $w v$. The vertex w is called the subdivided vertex. The Subdivision graph $S(G)$ of a graph G is the graph obtained from G by subdividing each edge of G exactly once.
A wounded spider is the graph obtained by subdividing atmost $p-1$ edges of a star $K_{1, p}$ exactly once.
Theorem 3.2.3: Let G be a connected graph G with minimum degree $\delta(G) \geq 4$. Then for $\gamma_{\text {cild }}^{e}(S(G))$ does not exist.
Proof : Let G be a connected graph with $\delta(G) \geq 4$. Then for any vertex $u \in V(G)$, $\operatorname{deg}(u) \geq \delta(G) \geq 4$. From the definition of the subdivision graph $S(G)$, it follows that in
between any two vertices there exists a subdivided vertex say v, such that $\operatorname{deg}(v)=2$. For any edge $w v \in E(S(G))$ and $w \in V(S(G)),|\operatorname{deg}(w)-\operatorname{deg}(v)| \geq 4-2=2$. Therefore, the degree equitable dominating set does not exist. Hence $\gamma_{c i l d}^{e}(S(G))$ does not exist.
Example 3.2.4 : In particular $\gamma_{\text {cild }}^{e}\left(S\left(K_{5}\right)\right)$ does not exist.

Figure 3.2.5.

The vertices marked with ' x ' are subdivided vertices and the vertices marked with' O^{\prime} are the vertices of a minimum co-isolated locating dominating set. Hence $\gamma_{c i l d}^{e}\left(S\left(K_{5}\right)\right)=5$. But $\gamma_{\text {cild }}^{e}\left(S\left(K_{5}\right)\right)$ does not exist.
3.3. Bounds for $\gamma_{\text {cild }}^{e}(G)$

Proposition 3.3.1: For any connected graph G, $\gamma_{\text {cild }}^{e}(G) \leq p-1$, if $\gamma_{\text {cild }}^{e}(G)$ exists.
Theorem 3.3.2: For a connected graph $G, 1 \leq \gamma_{\text {cild }}^{e}(G)=1$ if and only if $G \cong K_{2}$.
Proof : Let $G \cong K_{2}$. Then from the Definition 3.3.1. it follows that $\gamma_{c i l d}^{e}(G)=1$. Conversely, let $\gamma_{c i l d}^{e}(G)=1$ and let S be a minimum degree equitable co-isolated locating dominating set. Then $|S|=1$. Let $S=\{u\}$, where $u \in V(G)$. Since S is a co-isolated locating dominating set, it follows from Theorem 2.4., that $|V-S| \leq 2^{1}-1=1$. Therefore $V-S$ also contains only one vertex say v. For G to be connected $u v \in E(G)$ which implies that $G \cong K_{2}$.
Remark 3.3.3 : . For any graph $G, \gamma_{\text {cild }}^{e}(G) \leq 2 q-p+1$.
Theorem 3.3.4 : For any connected graph $G, \gamma_{c i l d}^{e}(G) \geq \min \left\{\gamma_{d}^{e}(G), \gamma_{c i l d}(G)\right\}$.
Proof : Since every degree equitable co-isolated locating dominating set is a equitable dominating set,

$$
\begin{equation*}
\gamma_{c i l d}^{e} \geq \gamma_{d}^{e}(G) \tag{1}
\end{equation*}
$$

Also every degree equitable co-isolated locating dominating set is a co-isolated locating
dominating set and hence

$$
\begin{equation*}
\gamma_{c i l d}^{e} \geq \gamma_{c i l d}(G) . \tag{2}
\end{equation*}
$$

Combining (1) and (2), the result is obtained.
Theorem 3.3.5 : If G is a regular graph or a bipartite graph $K_{m, m+1}$ for some m, then $\gamma_{\text {cild }}^{e}(G)=\gamma_{\text {cild }}(G)$.
Proof : Let G be a regular graph. Let S be a $\gamma_{\text {cild }}$-set of G. Each vertex of G has same degree. Therefore $|\operatorname{deg}(u)-\operatorname{deg}(v)|=0 \leq 1$ for any $u, v \in V(G)$. Then S is also a degree equitable co-isolated locating dominating set of G. Therefore $\gamma_{\text {cild }}^{e}(G)=\gamma_{\text {cild }}(G)$. Suppose G is a bipartite graph $K_{m, m+1}$ where $m \geq 2$ then every vertex of G has degree either m or $m+1$ where m is a positive integer. Let S be a $\gamma_{\text {cild }}$-set of G. Then $|S|=\gamma_{\text {cild }}(G)$. Let $u \in V-S$, then their exist a vertex $v \in S$ such that $u v \in E(G)$. Also $\operatorname{deg}(u)=m$ or $m+1$ and $\operatorname{deg}(v)=k$ or $k+1$. Therefore $|\operatorname{deg}(u)-\operatorname{deg}(v)|=0$ or $1 \leq 1$. Therefore S is a degree equitable co-isolated locating dominating set. Hence $\gamma_{\text {cild }}^{e} \leq \gamma_{c i l d}(G)$. But by Theorem 3.3.4., $\gamma_{c i l d}(G) \leq \gamma_{\text {cild }}^{e}(G)$. It follows that $\gamma_{\text {cild }}^{e}(G)=$ $\gamma_{\text {cild }}(G)$. This completes the proof of the theorem.
Corollary 3.3.6 : For a cycle $C_{p}(p \geq 6), \gamma_{\text {cild }}^{e}\left(C_{p}\right)=\left\lceil\frac{2 p}{5}\right\rceil$.
Proof: Since the cycle C_{p} is a 2-regular graph and $\left(C_{p}\right)=\gamma_{c i l d}\left(C_{p}\right)$ and by Theorem 2.7., $\gamma_{\text {cild }}\left(C_{p}\right)=\left\lceil\frac{2 p}{5}\right\rceil$. Hence $\gamma_{\text {cild }}^{e}\left(C_{p}\right)=\left\lceil\frac{2 p}{5}\right\rceil$.

Corollary 3.3.7: For a complete graph $K_{p}(p \geq 2)$, $\gamma_{\text {cild }}^{e}\left(K_{p}\right)=p-1$.
Proof: Since the complete graph K_{p} is a $(p-1)$ regular graph. By Theorem 3.3.5., $\gamma_{c i l d}^{e}\left(K_{p}\right)=\gamma_{c i l d}\left(K_{p}\right)$ and by Theorem 2.3, $\gamma_{c i l d}\left(K_{p}\right)=p-1 . \gamma_{c i l d}^{e}\left(K_{p}\right)=p-1$.
Remark 3.3.8: The converse of the Theorem 3.3 .5 is not necessarily true. For Example consider the graph G given in Figure 3.3.9.

Figure 3.3.9.

The set $\left\{v_{1}, v_{3}, v_{4}, v_{7}\right\}$ is a $\gamma_{\text {cild }}{ }^{-}$set of G and the set $\left\{v_{2}, v_{3}, v_{6}, v_{8}\right\}$ is a $\gamma_{\text {cild }}^{e}{ }^{e}$-set of G. Therefore $\gamma_{c i l d}(G)=\gamma_{\text {cild }}^{e}(G)=4$. But G is not a regular graph.
Theorem 3.3.10: If G is a connected graph with $\Delta(G)=\delta(G)+1$ then $\gamma_{\text {cild }}(G) \leq$ $\gamma_{c i l d}^{e}(G)$, where $\delta(G)$ and $\Delta(G)$ are the minimum and maximum degree of the graph G. Proof: Let G be a connected graph with $\Delta(G)=\delta(G)+1$. Then $\delta(G) \leq \operatorname{deg}(u) \leq$ $\Delta(G)$ where $u \in V(G)$. For any two adjacent vertices $u, v \in V(G), \operatorname{deg}(u)-\operatorname{deg}(v) \leq$ $\Delta(G)-\delta(G) \leq \delta(G)+1-\delta(G) \leq 1$. Therefore every co-isolated locating dominating set is a degree equitable co-isolated locating dominating set. Hence $\gamma_{\text {cild }}^{e}(G)=\gamma_{c i l d}(G)$. Corollary 3.3.11: For a path $P_{p}(p \geq 6), \gamma_{c i l d}^{e}=\left\lceil\frac{2 p}{5}\right\rceil$.
Proof: For a path $P_{p}, \delta\left(P_{p}\right)=1$ and $\Delta\left(P_{p}\right)=2$. Therefore $\Delta\left(P_{p}\right)=\delta\left(P_{p}\right)+1$. Hence by Theorem 3.3.10, $\gamma_{\text {cild }}^{e}\left(P_{p}\right)=\gamma_{\text {cild }}\left(P_{p}\right)$. By Theorem 2.4., $\gamma_{c i l d}\left(P_{p}\right)=\left\lceil\frac{2 p}{5}\right\rceil$. Therefore $\gamma_{\text {cild }}^{e}\left(P_{p}\right)=\left\lceil\frac{2 p}{5}\right\rceil$.

$3.4 \gamma_{\text {cild }}^{e}{ }^{e}$ for Some Particular Graphs

Definition 3.4.1: The Triangular snake graph T_{p} is obtained from the path P_{p} by replacing each edge of the path by a triangle C_{3}.
Theorem 3.4.2 : For a Triangular Snake Graph $T_{p}(p \geq 3), \gamma_{c i l d}^{e}\left(T_{p}\right)=\left\lceil\frac{2 p-2}{5}\right\rceil$.
Proof: Let $V\left(T_{p}\right)=\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$, where p is odd. Let $A=\left\{v_{1}, v_{3}, v_{5}, c, v_{p}\right\}$ be the set of vertices of the underlying path $P_{\frac{p+1}{2}}$ of T_{p}. For $u \in A$ and $u \neq v_{1}$ or $v_{p}, \operatorname{deg}_{T_{p}}(u)=4$ and $\operatorname{deg}_{T_{p}}=\operatorname{deg}_{T_{p}}\left(v_{1}\right)=2$. Let $B=\left\{v_{2}, v_{4}, v_{6}, \cdots, v_{p-1}\right\}$ and $d e g_{T_{p}}(v)=4$ for all $v \in B$. Also $\langle B\rangle$ is independent and the vertex $v_{2 i}$ of B is adjacent to $v_{2 i-1}$ and $v_{2 i+1}$ in A, for $i=1,2, \cdots, \frac{p-1}{2}$. For any edge $u v \in E\left(T_{p}\right)$, where vertex $u \in A, u \neq v_{1}$ or v_{p} and $v \in B, \operatorname{deg}_{T_{p}}(u)-\operatorname{deg}_{T_{p}}(v)=4-2=2 \leq 1$. Hence all the vertices of B are to be included in the $\gamma_{c i l d}^{e}$-set of T_{p}. By Theorem 2.6., $\gamma_{d}^{e}\left(P_{p}\right)=\left\lceil\frac{p}{3}\right\rceil$. Therefore

$$
\begin{aligned}
\gamma_{c i l d}^{e}\left(T_{p}\right) & =\gamma_{\text {cild }}^{e}\left(\left\langle A-\left\{v_{1}, v_{2}\right\}\right\rangle\right)+|B| \\
& =\left\lceil\frac{\frac{p-1}{2}}{3}\right\rceil+\frac{p-1}{2} \\
& =\left\lceil\frac{3 p-3+p-1}{6}\right\rceil \\
& =\left\lceil\frac{4 p-4}{6}\right\rceil \\
\gamma_{\text {cild }}^{e}\left(T_{p}\right) & =\left\lceil\frac{2 p-2}{3}\right\rceil
\end{aligned}
$$

Example 3.4.3 : The triangular snake graph T_{23} is given in Figure 3.4.4.

Figure 3.4.4
The set $S=\left\{v_{2}, v_{4}, v_{6}, v_{8}, v_{10}, v_{12}, v_{14}, v_{16}, v_{18}, v_{20}, v_{22}, v_{5}, v_{11}, v_{17}, v_{21}\right\}$ is a $\gamma_{c i l d}^{e}$-set of T_{23}. Also,

$$
\begin{aligned}
\gamma_{c i l d}^{e}\left(T_{23}\right) & =\left\lceil\frac{\frac{p-1}{2}}{3}\right\rceil+\frac{p-1}{2} \\
& =\left\lceil\frac{11}{3}\right\rceil+\frac{22}{2} \\
& =15=|S|
\end{aligned}
$$

Hence, $\gamma_{\text {cild }}^{e}\left(T_{23}\right)=15$.
Definition 3.4.5 : The join of two graphs G and H is the graph $G+H$ with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{u v: \in V(G), v \in V(H)\}$. The Wheel W_{p} with p vertices is defined to be the join of K_{1} and C_{p-1}. The vertex corresponding to K_{1} is known as apex (or central vertex) while the vertices corresponding to C_{p-1} are known as rim vertices.
Theorem 3.4.6 : For the Wheel graph $W_{p}(p \geq 6)$, $\gamma_{c i l d}^{e}\left(W_{p}\right)=\left\lceil\frac{2 p+2}{5}\right\rceil$.
Proof: Let $V\left(W_{p}\right)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{p}\right\}$, where v_{1} is the central vertex and $\operatorname{deg}\left(v_{1}\right)=$ $p-1$ and the remaining vertices $v_{2}, v_{3}, \cdots, v_{p}$ are of degree 3 and $\left\langle v_{2}, v_{3}, \cdots, v_{p}\right\rangle \cong$ C_{p-1}. Then $\operatorname{deg}\left(v_{1}\right)-\operatorname{deg}\left(v_{i}\right)=p-1-3 \geq 6-4 \geq 2$ for all $i=2,3, \cdots, p$. Also, $\left|\operatorname{deg}\left(v_{i}\right)-\operatorname{deg}\left(v_{j}\right)\right|=0<1$ for $2 \leq i, j \leq p$ and $i \neq j$.
Case(i): $p \equiv 0,1,3(\bmod 5)$
Let S be a $\gamma_{c i l d}$-set of W_{p}. By Theorem 2.8., $\gamma_{c i l d}\left(W_{p}\right)=\left\lceil\frac{2 p+1}{5}\right\rceil$. Also each vertex in $V-S$ is adjacent to a vertex other than the central vertex of W_{p}. Hence S will also be a $\gamma_{\text {cild }}^{e}{ }^{-}$set of W_{p}. Therefore $\gamma_{\text {cild }}^{e}\left(W_{p}\right)=\gamma_{\text {cild }}\left(W_{p}\right)=\left\lceil\frac{2 p+1}{5}\right\rceil$.
Case(ii) : $p \equiv 2,4(\bmod 5)$

Let S be a $\gamma_{c i l d}$-set of W_{p}. The set $S \cup\left\{v_{p}\right\}$ is a $\gamma_{c i l d}^{e}{ }^{e}$-set of W_{p}. Therefore $\gamma_{\text {cild }}^{e}\left(W_{p}\right)=$ $\gamma_{\text {cild }}\left(W_{p}\right)+1=\left\lceil\frac{2 p+1}{5}\right\rceil+1$. Hence the theorem.
Remark 3.4.7: $\gamma_{\text {cild }}^{e}\left(W_{4}\right)=\gamma_{\text {cild }}^{e}\left(W_{5}\right)=3$.

4. Conclusion

In this paper, a new domination combining the concepts of Degree equitable domination and co-isolated locating domination called degree equitable co-isolated domination is given and its corresponding number is studied for some standard graphs. Also its lower and upper bounds are found.

5. Open Problems

- To characterize all the connected graphs G for which $\gamma_{\text {cild }}^{e}(G)$ does not exist.
- To establish the sufficient condition for Theorem 3.3.5.

Acknowledgement

This research paper is not published or submitted elsewhere for possible publication and the authors assure this acknowledgement.

References

[1] Harary F., Graph Theory, Addison-Wesley, Reading Mass, (1969).
[2] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker Inc., (1998).
[3] Muthammai S., Meenal N., Co-isolated locating domination number for some standard graphs, National conference on Applications of Mathematics \& Computer Science (NCAMCS-2012), S. D. N. B Vaishnav College for Women(Autonomous), Chennai, (February 10, 2012), 60-61.
[4] Muthammai S., Meenal N., Isolated locating domination number of a graph, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College (Autonomous), Tiruchirappalli,(December 18-19, 2012), 7-9.
[5] Muthammai S., Meenal N., More results on co-isolated locating domination number of graphs, International Journal of Mathematics Trends and Technology (IJMTT), 31(2) (March 2016), 46-52.
[6] Muthammai S., Meenal N., Co-isolated locating domination number for unicyclic graphs, International Organization Of Scientific Research (IOSR-JM), 11(issue 5, Ver. IV) (Sep-Oct. 2015), 38-52.
[7] Muthammai S., Meenal N., Co-isolated locating domination number for cubic graphs, International Journal of Pure and Applied Mathematics (IJPAM), 109(9) (2017), 37-45.
[8] Rall D. F., Slater P. J., On location domination number for certain classes of graphs, Congrences Numerantium, 45 (1984), 77-106.
[9] Venkatasubramanian Swaminathan, Kuppusamy Markandan Dharmalingam, Degree Equitable domnation on graphs, Kragujevac Journal Of Mathematics, 35(1) (2011), 191-197.

