SOME FIXED POINT THEOREMS ON COMPACT AND COMPLETE METRIC SPACES USING THE HYBRID GENERALIZED φ-WEAK CONTRACTION FOR TWO PAIR OF SELF MAPPINGS USING SEMI-COMPATIBILITY

L. SHAMBHU SINGH ${ }^{1}$, Th. CHHATRAJIT SING ${ }^{2}$ AND L. PREMILA DEVI ${ }^{3}$
${ }^{1,3}$ Department of Mathematics,
D. M. Collge of Science, Imphal Manipur-795001, India
${ }^{2}$ Department of Mathematics, Manipur Technical University, Imphal, Manipur-795004, India

Abstract

In this paper we obtain some common fixed point theorems on compact and complete metric spaces for two pairs of self mappings, using the hybrid generalized φ-weak contraction. Our results improve, extend or generalize those results of Shambhu, Chhatrajit, Krishnanando [20] etc.

1. Introduction

The concept of contraction and weak contraction in metric fixed point Theory are found in a number of research papers viz [1], [2], [3], [4] [7], [8], [12], [20] etc. In 1997 Alber

Key Words : Fixed point, Compact metric space, Complete metric space, Hybrid generalized φ-weak contraction, Semi-compatibility.
AMS Subject Classification : 47H10 54H25.
(c) http: //www.ascent-journals.com

UGC approved journal (Sl No. 48305)
and Guerre - Delabriere [13] introduced weak contraction for single valued mappings in Hilbert Space and established existence of fixed points using φ-weak contraction on a complete metric space. Shambhu etal [20] proved existence of fixed point for a pair of self mappings on a compact metric space.

The aim of this paper is to prove existence of a unique common fixed points of a hybrid generalized φ-weak contraction for two pairs of self-mappings in compact and in complete metric spaces.
Before proving the main result we need the following definitions for our main results.
Definition 1.1 : Let (X, d) be a metric space. Let $f: X \rightarrow X$ be a mapping f is called.
(i) non-expansive of $d(f x, f y) \leq d(x, y), \forall x, y \in X$.
(ii) contractive if $d(f x, f y)<d(x, y), \quad \forall x, y \in X, x \neq y$,
(iii) a contraction if there exists a real number, $\lambda, 0 \leq \lambda<1$ such that $d(f x, f y) \leq$ $\alpha d(x, y), x \neq y$.

Definition 1.2: A self-mapping $T: X \rightarrow X,(X, d)$ in a metric space is called a φ-weak contraction if for each $x, y \in X$ there exists a real valued function $\varphi[[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)>0$ for all $t \in[0, \infty)$ such that $\varphi(0)=0$ and

$$
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) .
$$

Definition 1.3: Let (x, d) be a metric space and $T: X \rightarrow X$ be mapping. A point $x \in X$ is a fixed point of T if x is mapped onto itself under T i.e. if $T x=x$.
Definition 1.4: Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a contraction defined on X. Then T has a unique fixed point in X.
Example 1.1: The mapping $T: X \rightarrow R$ defined by $T x=x^{2}$ has $x=0$ and $x=1$ as fixed points. This also shows that the fixed point, if exists may not be unique.

Definition 1.6 : Let $S, T: X \rightarrow X$ be two self-mappings. A point $x \in X$ is said to be a coincident point of S and T if $S x=T x$.

Example 1.2: Let $T x=x^{2}, S x=x$ on the usual metric space (X, d). The points $x=0$ and $x=1$ are coincident points of S and T.

Example 1.3: Consider the mappings $T, S: X \rightarrow R$ defined by $T x=x^{2}, S x=$ $x^{2}, S x=-x^{2} \quad \forall x \in(0,1]=X$ with the usual metric $d(x, y)=|x-y|$. Then T and S have no coincident point on X.
Example 1.4: The mapping $T: X \rightarrow R, X=[0,1)$ defined by $T x=\frac{1}{1+x} \quad \forall x \in[0,1)$ is contractive but not a contraction. Moreover T has no fixed point. This examples shows that self-mappings may not have a fixed point.

2. Main Results

Theorem 2.1: Let (X, d) be a compact metric space and let S, T, I and J be self mappings defined on X which satisfy the following for each $x, y \in X$:
(i) $S(X) \subseteq I(X)$ and $T(X) \subseteq J(X)$
(ii) $d(S x, T y) \leq C(x, y)-\varphi(C(x, y))$
where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous from the right with $\varphi(t)>0$ for all $t>0$ and $\varphi(0)=0$ and
(iii) $C(x, y)=\max \left\{d(I x, J y), \frac{1}{2}[d(I x, S x)+d(J y, T y)], \frac{1}{2}[d(x, T y)+d(J y, S x)]\right\}$ then if the pairs $\{S, J\}$ and $\{T, I\}$ are semi-compatible then they have coincident points which are the unique common fixed points of the mappings S, T, I and J.

Proof: Let x_{0} be arbitrary. Define sequences $\left\{y_{n}\right\}$ and $\left\{x_{n}\right\}$ as

$$
\begin{aligned}
y_{2 n} & =S x_{2 n}=I x_{2 n+1} \\
y_{2 n+1} & =T x_{2 n+1}=J x_{2 n+2} \quad \text { for all } n=0,1,2,3, . .
\end{aligned}
$$

such that

$$
\begin{aligned}
y_{0} & =S x_{0}=I x_{1} \\
y_{1} & =T x_{1}=J x_{2} \\
y_{2} & =S x_{2}=I x_{3} \\
y_{3} & =T x_{3}=J x_{4} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
d\left(y_{2 n+1}, y_{2 n}\right)= & d\left(S x_{2 n+1}, T x_{2 n}\right) \\
\leq & C\left(x_{2 n+1}, x_{2 n}\right)-\varphi\left(C\left(x_{2 n+1}, x_{2 n}\right)\right) \\
< & C\left(x_{2 n+1}, x_{2 n}\right) \\
= & \max \left\{d\left(I x_{2 n+1}, J x_{2 n}\right), \frac{1}{2}\left[d\left(I x_{n+1}, S x_{2 n+1}\right)+d\left(J x_{2 n}, T x_{2 n}\right)\right],\right. \\
& \left.\frac{1}{2}\left[d\left(I x_{2 n+1}, T x_{2 n}\right)+d\left(J x_{2 n}, S x_{2 n+1}\right)\right]\right\} \\
= & \max \left\{d\left(y_{2 n}, y_{2 n-1}\right), \frac{1}{2}\left[d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n-1}, y_{2 n}\right)\right]\right. \\
& \left.\frac{1}{2}\left[d\left(y_{2 n 1}, y_{2 n}\right)+d\left(y_{2 n-1}, y_{2 n+1}\right)\right]\right\}
\end{aligned}
$$

If $d\left(y_{2 n+1}, y_{2 n}>d\left(y_{2 n}, y_{2 n-1}\right)\right.$ then

$$
\begin{equation*}
C\left(x_{2 n+1}, x_{2 n}\right)=d\left(y_{2 n+1}, y_{2 n}\right) \tag{2.1.4}
\end{equation*}
$$

Also,

$$
\begin{align*}
d\left(y_{2 n+1}, y_{2 n}\right) & =d\left(S x_{2 n+1}, x_{2 n}\right) \\
& \leq C\left(x_{2 n+1}, x_{2 n}\right)-\varphi\left(C\left(x_{2 n+1}, x_{2 n}\right)\right) \\
& =d\left(y_{2 n+1}, y_{2 n}-\varphi\left(d\left(y_{2 n+1}, y_{2 n}\right)\right)\right. \tag{2.1.5}\\
& <d\left(y_{2 n+1}, y_{2 n}\right) \quad \text { as } \varphi(t)>0 \forall t>0
\end{align*}
$$

which is a contradiction. Similarly we have another contradiction if n is taken an even number.

$$
\therefore \quad d\left(2 n+1, y_{2 n}\right) \leq d\left(y_{2 n}, y_{2 n-1}\right) .
$$

Now, $\left\{d\left(y_{2 n+1}, y_{2 n}\right)\right\}$ and hence $\left\{d\left(y_{n+1}, y_{n}\right)\right\}_{n \geq 0}$ is a non-increasing sequence of positive real $\left(R^{+}\right)$which is bounded from below i.e. there exists a positive number r such that,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{2 n+1}, y_{2 n}\right)=\lim C\left(x_{2 n+1}, x_{2 n}\right)=r . \tag{2.1.6}
\end{equation*}
$$

From (2.1.5), we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} d\left(y_{2 n+1}, y_{2 n}\right) & \leq \lim _{n \rightarrow \infty} C\left(x_{2 n+1}, x_{2 n}\right)-\lim _{n \rightarrow \infty} \inf \varphi\left(C\left(x_{2 n+1}, x_{2 n}\right)\right) \\
& \Rightarrow r \leq r-\varphi(r) \\
& \Rightarrow \varphi(r) \leq 0 \\
& \Rightarrow \varphi(r)=0 \\
& \Rightarrow r=0 \\
& \therefore \quad \lim _{n \rightarrow \infty} d\left(y_{2 n+1}, y_{2 n}\right)=0 . \tag{2.1.7}
\end{align*}
$$

To prove $\left\{y_{2 n}\right\}$ or $\left\{y_{n}\right\}_{n \geq 0}$ is a Cauchy sequence. If not, there exists positive integers m and $n \geq N(\epsilon)$ for each positive number $\epsilon>0$ such that

$$
d\left(y_{n+1}, y_{m+1}\right)>\epsilon
$$

i.e.

$$
\begin{aligned}
\epsilon<d\left(y_{n+1}, y_{m+1}\right) & =d\left(S x_{n+1}, T x_{m+1}\right) \\
& \leq C\left(x_{n+1}, x_{m+1}\right)-\varphi\left(C\left(x_{n+1}, x_{m+1}\right)\right)
\end{aligned}
$$

Letting $m, n \rightarrow \infty$ and using (2.1.6) we have, $\epsilon<0$ which is a contradiction.
Thus, $\left\{y_{n}\right\}_{n \geq 0}$ is a Cauchy sequence.
Since X is compact and hence sequentially compact $\left\{y_{n}\right\}$ converges in X i.e. there exists. some $z \in X$ such that $y_{2 n} \rightarrow z$ as $n \rightarrow \infty$.
i.e. $\lim _{n \rightarrow \infty} S x_{2 n}, \lim _{n \rightarrow \infty} I x_{2 n-1} \rightarrow z$.

If S, J are semi-compatible $\lim _{n \rightarrow \infty} J S x_{2 n}=S z \Rightarrow J z=S z$ i.e. z is a coincident point of J and S.
Similarly, T and I are semi-compatible implies $\lim _{n \rightarrow \infty} I T x_{2 n}=T z \Rightarrow I z=T z$
Let $I z=S z=J z=T x=t$ for some $t \in X$ then $t=z$. Assume that $t \neq z \Rightarrow d(t, z) \neq 0$.

Now,

$$
\begin{aligned}
d(t, z) & =d\left(\lim _{n \rightarrow \infty} y_{2 n}, T z\right) \\
& =\lim _{n \rightarrow \infty}\left(y_{2 n}, T z\right) \\
& =\lim _{n \rightarrow \infty} d\left(S x_{2 n}, T z\right) \\
& <\lim _{n \rightarrow \infty} C\left(x_{n}, z\right) \\
& =\lim _{n \rightarrow \infty} \max \left\{d\left(I x_{n}, J z\right), \frac{1}{2}\left[d\left(I x_{n}, S x_{n}\right)+d(J z, T z)\right], \frac{1}{2}[d(z, t)+d(t, z)]\right\} \\
& <\max \left\{d(z, t), \frac{1}{2}[d(z, z)+d(t, t)], \frac{1}{2}[d(z, t)+d(t, z)]\right\} \\
& \rightarrow d(z, t)<d(z, t) \\
& \Rightarrow \text { a contradiction. }
\end{aligned}
$$

Thus $z=t$. Hence $S z=I z=J z=T z=z^{\prime}$. i.e. z is a common fixed point.
For Uniqueness, let, if possible there be another fixed point z^{\prime} such that $S z^{\prime}=I z^{\prime}=$ $J z^{\prime}=T z=z^{\prime}$ then $z=z$. If not $z \neq z^{\prime}$ and hence $d\left(z, z^{\prime}\right) \neq 0$.
Now,

$$
\begin{aligned}
d\left(z^{\prime}, z^{\prime}\right) & =d\left(S z, T z^{\prime}\right) \\
& \leq C\left(z, z^{\prime}\right)-\varphi\left(C\left(z, z^{\prime}\right)\right) \\
& <C\left(z, z^{\prime}\right) \\
& =\max \left\{d\left(I z, J z^{\prime}\right), \frac{1}{2}\left[d\left(I z, S z^{\prime}\right)+d(J z, T z)\right], \frac{1}{2}\left[d\left(I z, T z^{\prime}\right)+d(J z, S z)\right]\right\} \\
& <\max \left\{d\left(z, z^{\prime}\right), \frac{1}{2}\left[d\left(z, z^{\prime}\right)+d\left(z, z^{\prime}\right)\right], \frac{1}{2}\left[d(z, z)+d\left(z^{\prime}, z\right)\right]\right\} \\
& =\max \left\{d\left(z, z^{\prime}\right), \frac{1}{2} s\left(z, z^{\prime}\right), d\left(z, z^{\prime}\right)\right\}
\end{aligned}
$$

i.e. $d\left(z, z^{\prime}\right)<d\left(z, z^{\prime}\right)$ which is a contradiction.

Theorem 2.2 : Theorem 2.1, 2.2, 2.3, 2.4 etc. of [20] are particular cases of Theorem 2.1 above, on setting $I=J=I$, the Identity mapping on X.

Theorem 2.3 :Let (X, d) be a complete metric space and, let S, T, I and J are self mappings defined on X such that for all $x, y \in X$ they satisfy.
(i) $S(X) \subseteq I(X)$ and $T(X) \subseteq J(X)$
(ii) $d(S x, T y) \leq C(x, y)-\varphi(C(x, y))$ wheere $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a lower semicontinuous from the right with $\varphi(t)>0 \forall t \in[0, \infty)$ and $\varphi(0)=0$.
(iii) $C(x, y)=\max \left\{d(I x, J y), \frac{1}{2}[d(I x, S x)=d(J y, T y)], \frac{1}{2}[d(I x, T y)+d(J y, S x)]\right\}$, then if the pairs $\{S, J\}$ and T, I are semi-compatible then they have coincident points which are the unique common fixed points of S, I, I and J.

Theorem 2.4: Let (X, d) be a sequentially compact metric space and let S, T, I and J be self mappings defined on X such that all the conditions (i), (ii) and (iii) held and one of the range space $I(X), J(X), S(X)$ as $T(X)$ is a closed subspace X them if the pairs $\{S, I\}$ and $\{T, J\}$ are semi-compatible then they have coincident points in X which are the unique common fixed points of S, T, I and J.
Proof : The details of the proofs of Theorem 2.2, 2.3, 2.4 etc. are omitted.
Theorem 2.5: $X=[0,1] \subseteq R$

$$
\begin{aligned}
& S x=J x= \begin{cases}x, & x \in\left[0, \frac{1}{3}\right) \\
\frac{1}{3}, & x \in\left[\frac{1}{3}, 1\right]\end{cases} \\
& T x=I x= \begin{cases}1-2 x, & x \in\left[0, \frac{1}{3}\right) \\
\frac{1}{3}, & x \in\left[\frac{1}{3}, 1\right]\end{cases}
\end{aligned}
$$

Choose $\left\{x_{n}\right\}, x_{n} \in X$ s.t $x_{n} \rightarrow \frac{1}{3}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} I x_{n} & =\lim _{n \rightarrow \infty} S x_{n}=\frac{1}{3} . \\
\lim _{n \rightarrow \infty} T x_{n} & =\lim _{n \rightarrow \infty} J x_{n}=\frac{1}{3} . \\
\lim _{n \rightarrow \infty} J S x_{n} & =J \frac{1}{3}=\frac{1}{3}=S \frac{1}{3} \\
\lim _{n \rightarrow \infty} I T x_{n} & =1 \frac{1}{3}=\frac{1}{3}=T \frac{1}{3} .
\end{aligned}
$$

Thus, the pairs $\{S, J\}$ and $\{T, I\}$ are semi-compatible and continuous. at $x=\frac{1}{3}$. Further $x=\frac{1}{3}$ is the unique common fixed point of the mappings S, I, T and J.
Example 2.6 : Define mapping, S, T, I and J on $X=[0, \infty)$ by

$$
S x=I x= \begin{cases}2+3 x, & x \in[0,1) \\ 2, & x \in[1, \infty)\end{cases}
$$

$$
T x=J x= \begin{cases}2, & x \in[0,1) \\ 2+3 x, & x \in[1, \infty)\end{cases}
$$

Choose $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.
Thus $\lim _{n \rightarrow \infty} S x_{n}=2=\lim _{n \rightarrow \infty} J x_{n}$.
Also, $\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} I x_{n}=2$.
Now, $\lim _{n \rightarrow \infty} J S x_{n}=J 2=26 \neq S 2$.
Therefore, $\{S, J\}$ is not semi-compatible.
Again $\lim _{n \rightarrow \infty} I T x_{n}=2=2 \neq T 2=26$.
Hence $\{T, I\}$ is also not semi-compatible.
The mappings S, I, T and J don't have a common fixed point in $X . S, I, T$ and J are discontinuous at $x=1$.

Acknowledgement

The first author L. Shambhu Singh is financially supported by UGC-MRP project No.-F.5-334/2014-2015/NERO/2367 dated 18/2/2015.

References

[1] Edelstein M. E., An extension of Banack's contraction Principle, Proc. AMS. 12 (1961), 7-10.
[2] Boyd D. W., Wong T. S. W., On non-linear contractions, Proc. Amer, Soc., 20 (1969), 458-464.
[3] Meir A., Keeler E., A theorem on contraction mapping, J. Math. Ana. Appl. 2 (1969), 526-529.
[4] Ciric Lj. B., A generalization of Banack's contraction principle, Proc. A.M.S., 45 (1974), 267-273.
[5] Altman M., An integral test and generalized contraction, Amer Math. Monthy, 82 (1975), 817-829.
[6] Wong C. S., On Kannan type, Proc. Amer. Math. Sci. 105(VIII) M 50\# 10929 Zbl 292-47004, (1975).
[7] Rhoades B. E., A comparison of various definitions of contractive mappings, Trans. AMS, 226 (1977), 256-290.
[8] Park S., Fixed points of f-contractive maps., Rocky Mountain J. Math., (1978), 743-750.
[9] Park S., Bae J. S., Meir-keeler type contractive conditions, Math. Japonica, (1981), 13-20.
[10] Chang S. S., On common fixed point theorem for a family of φ-contraction mappings, Math. Japonica, 29 (1984), 527-536.
[11] Kalinke A. K., On a fixed point theorem for Kannan type mappings, Math. Japonic, 33(5) (1988), 721-723.
[12] Pathak H. K., A Meir-Keeler type fixed point theorem for weakly uniformly contraction maps., Bull Malasian Math. Soc., II series, (1990), 21-29.
[13] Alber Y. J., Guerre-Delabriere S., Principles of weakly contractive maps in Hilbert space in, I. Gohberg, Yu lyubish (Eds), New results in operator theory in : Advance and Appl. 98, Bir Khauser, Basel (1997), 7-22.
[14] Singh M. R., Singh L. S., Murthy P. P., Common fixed point of set valued mappings, Int. J. Math. Sci. 25(6) (2001), 411-415.
[15] Rhoades B. E., some theorems on contractive maps., Non-Linear Anal. 47 (2001), 2683-2693.
[16] Hussain N., Jungck G., Common fixed point and invariant approximation results for non-commutating generalized (f, g)-non expansive maps. Journal of Maths. Anal. Appl., 321 (2006), 851-861.
[17] Song Y., Coincidence points for non-commuting f-weakly contractive mappings, Int. Compute Appl. Math. (IJCAM), 2(1) (2007), 51-57.
[18] Shambhu L., Mahendra Y., Singh M. R., Some Common fixed point theorems in complete and incomplete metric spaces, IJM EA, ISSH : 0973-9424, 12(IV) (2008), 263-271.
[19] Zhang Q. Song Y., Fixed point Theory for generalized φ-weak contraction, Applied Mathematics letters, 22 (2009), 75-78.
[20] Singh L. S., Singh T. C., Singh M. K., A fixed point theorem on compact metric space using hybrid generalized φ-weak contraction, Theometical Mathematics and Applications, 4(4) (2014), 19-28.

