International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 12 No. II (December, 2018), pp. 23-27

JUMP OF DISTRIBUTION OF $D_{L^{2}}^{\prime}$ THROUGH THE ANALYTIC REPRESENTATION

EGZONA ISENI ${ }^{1}$, SHPETIM REXHEPI ${ }^{2}$ AND BEDRIJE BEDZETI ${ }^{3}$
1,2 Mother Theresa University,
Departament of Mathematics, Skopje, Macedonia
${ }^{3}$ University of Tetovo,
Departament of Mathematics, Tetovo, Macedonia

Abstract

In this paper we give some results in the space $D_{L^{2}}^{\prime}$. We determine the jump of a regular distribution in the space $D_{L^{2}}^{\prime}$ in terms of the derivatives of the analytic and the harmonic representation.

1. Introduction

$D_{L^{p}}, 1 \leq p<\infty$ denotes the space of all infinitely differentiable functions φ for which $\varphi^{(\beta)} \in L^{p}$ for each n-tuple β of nonnegative integers.
$B=D_{L^{\infty}}$ is the space of all infinitely differentiable functions which are bounded on \mathbb{R}^{n}.
\dot{B} is the subspace of B that consists of all functions $\varphi \in B$ which vanish at infinity together with each of their derivatives.
A sequence of functions $\left(\varphi_{\lambda}\right)$ of $D_{L^{P}}$ converges to a function φ in the topology of $D_{L^{P}}$, $1 \leq p \leq \infty$ as $\lambda \rightarrow \lambda_{0}$ if each $\varphi_{\lambda} \in D_{L^{p}}, \varphi \in D_{L^{p}}$, and

Key Words: $D_{L^{2}}^{\prime}$ spaces, distribution, Analytic representation, Jump of distribution.
2010 AMS Subject Classification : Primary 46F20, Secondary 44A15, 46F12.
(C) http: //www.ascent-journals.com

$$
\lim _{\lambda \rightarrow \lambda_{0}}\left\|\varphi_{\lambda}^{(\beta)}-\varphi^{(\beta)}\right\|_{L^{p}}=\lim _{\lambda \rightarrow \lambda_{0}}\left(\int_{\mathbb{R}^{n}}\left|\varphi_{\lambda}^{(\beta)}(x)-\varphi^{(\beta)}(x)\right|^{p} d x\right)^{1 / p}=0 \text { for every } \beta
$$

A sequence of functions $\left(\varphi_{\lambda}\right)$ converges to the function φ in \dot{B} as $\lambda \rightarrow \lambda_{0}$ if each $\varphi_{\lambda} \in \dot{B}, \varphi \in \dot{B}$, and

$$
\lim _{\lambda \rightarrow \lambda_{0}}\left\|\varphi_{\lambda}^{(\beta)}-\varphi^{(\beta)}\right\|_{L^{\infty}}=0 .
$$

D is dense in $D_{L^{p}}, 1 \leq p<\infty$ and in \dot{B}, but not in $B=D_{L^{\infty}}$. Also $D_{L^{p}}$ is dense in L^{p}. If $\varphi \in D_{L^{p}}$ for $1 \leq p<\infty$ then φ is bounded and converges to 0 at infinity with the same being true for all derivatives of φ.
We have $D \subset D_{L^{p}} \subset D_{L^{q}} \subset \dot{B}$ if $1 \leq p \leq q<\infty$.
$D_{L^{p}}^{\prime}, 1 \leq p<\infty$ is the space of all continuous linear functionals on $D_{L^{q}}$ where $\frac{1}{p}+\frac{1}{q}=1$. $D_{L^{\prime}}^{\prime}$ is the space of all continuous linear functionals on \dot{B}.
The function $F(z)$ which is analytic on $\mathbb{C} \backslash K$, where K is the support of f, and such that

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty}[F(x+i \epsilon)-F(x-i \epsilon)] \varphi(x) d x=\langle f, \varphi\rangle
$$

for all $\varphi \in D$, is called an analytic representation of f.
We say that $U(z)$, harmonic on $\operatorname{Imz}>0$ is a harmonic representation of $f \in D^{\prime}$ if

$$
U(x+i y) \text { conveges to } f(x) \text { in } D^{\prime} \text {, as } y \rightarrow 0^{+} .
$$

The following theorem is given in [7].
Theorem 1.1: If $f \in D_{L^{p}}^{\prime}$ then f has Cauchy representation $\hat{f}(z)=\frac{1}{2 \pi i}\left\langle f(t), \frac{1}{t-z}\right\rangle$, for $\operatorname{Im} z \neq 0$. A distribution $f \in D^{\prime}(\mathbb{R})$ is said to have a distributional jump behavior (or jump behavior) at $x=x_{0} \in \mathbb{R}$ i.e. $[f]_{x=x_{0}}$ if it satisfies the distributional asymptotic relation

$$
\begin{equation*}
f\left(x_{0}+\epsilon x\right)=\gamma_{-} H(-x)+\gamma_{+} H(x)+o(1) . \tag{1}
\end{equation*}
$$

as $\epsilon \rightarrow 0^{+}$in D^{\prime}, where $\gamma_{ \pm}$are constants and H is the Heaviside function and $\gamma_{+}-\gamma_{-}=$ $[f]_{x=x_{0}}$.
For the Fourier transform of f we write Φ i.e. $\Phi(w)=\int_{-\infty}^{\infty} f(t) e^{-i t w} d t$ and for the inverse Fourier transform $(\Phi)^{-1}$.
Let us define the subset of the upper half-plane, $\Delta_{\theta}^{+}\left(x_{0}\right)$, to be the set of all z such that $\theta \leq \arg \left(z-x_{0}\right) \leq \pi-\theta$, where $0<\theta \leq \pi / 2$. Similarly, we define the subset of the
lower half-plane, $\Delta_{\theta}^{-}\left(x_{0}\right)$.

2. Main Results

Theorem 2.1 : Let $T_{f} \in D_{L^{2}}^{\prime}$ be a distribution generated by $f \in L^{2}$ that have a jump behavior i.e.
$f\left(x_{0}+\epsilon x\right)=\gamma_{-} H(-x)+\gamma_{+} H(x)+o(1)$ as $\epsilon \rightarrow 0^{+}$at $x=x_{0}$. Suppose that F is analytic representation of f on $\operatorname{Im} z \neq 0$.
Then for any $0<\theta \leq \pi / 2$.

$$
\lim _{z \rightarrow x_{0}, z \in \Delta \theta^{ \pm}\left(x_{0}\right)}\left(z-x_{0}\right)^{k} F^{(k)}(z)=(-1)^{k} \frac{(k-1)!}{2 \pi i}[f]_{x=x_{0}} .
$$

Note : For the regular distributions T_{f} generated by f we will use the denotation f, i.e.

$$
\left\langle T_{f}, \varphi\right\rangle=\langle f, \varphi\rangle=\int_{\mathbb{R}^{n}} f(t) \varphi(t) d t, \quad \varphi \in D_{L^{2}} .
$$

Proof: Since $\varphi \in D_{L_{2}}$ and $f \in L^{2}$, the distribution T_{f} is well defined.
Using Theorem 8.6.1 in [1] we have that

$$
F(z)= \begin{cases}\frac{1}{2 \pi}\left\langle\Phi_{+}(t), e^{i z t}\right\rangle, & y>0 \\ -\frac{1}{2 \pi}\left\langle\Phi_{-}(t), e^{i z t}\right\rangle, & y<0\end{cases}
$$

is an analytic representation of f.
Differentiating equations (1) we have that

$$
\epsilon f^{\prime}\left(x_{0}+\epsilon x\right)=\gamma_{-} H^{\prime}(-x)(-1)+\gamma_{+} H^{\prime}(x)+o(1)
$$

i.e.

$$
f^{\prime}\left(x_{0}+\epsilon x\right)=\frac{1}{\epsilon}[f]_{x=x_{0}} \delta(x)+o\left(\frac{1}{\epsilon}\right)
$$

since $H^{\prime}(x)=\delta(x)$ and $\gamma_{+}-\gamma_{-}=[f]_{x=x_{0}}$.
Differentiating (1) k-times, we have that

$$
f^{(k)}\left(x_{0}+\epsilon x\right)=\frac{1}{\epsilon^{k}}[f]_{x=x_{0}} \delta^{(k-1)}(x)+o\left(\frac{1}{\epsilon^{k}}\right) .
$$

If we take Fourier transform in the last equation and using the properties

$$
\Phi(t-a)(w)=e^{-a w i} \Phi(w)
$$

$$
\begin{aligned}
\Phi(a t)(w) & =\frac{1}{a} \Phi\left(\frac{w}{a}\right) \\
\Phi^{(n)}(t)(w) & =(i w)^{n} \Phi(w)
\end{aligned}
$$

we obtain

$$
\begin{gather*}
\Phi^{(k)}\left(\epsilon x-\left(-x_{0}\right)\right)(\lambda t)=(i \lambda t)^{k} e^{i \lambda t x_{0}} \Phi(f)(\lambda t) \frac{1}{\epsilon^{k}} \\
(i \lambda t)^{k} \frac{1}{\epsilon^{k}} e^{i \lambda t x_{0}} \Phi(f)(\lambda t)=\frac{1}{\epsilon^{k}}[f]_{x=x_{0}}(i \lambda t)^{(k-1)} \cdot 1+o\left(\lambda^{k-1}\right) \text { as } \epsilon \rightarrow 0^{+} \tag{2}
\end{gather*}
$$

Let z belong to $\Delta_{\theta}^{ \pm}\left(x_{0}\right)$. Then from equations (1) and (2) we have

$$
\begin{aligned}
F^{(k)}\left(x_{0}+\frac{1}{\lambda} z\right) & = \pm \frac{i^{k}}{2 \pi} \lambda^{k+1}\left\langle t^{K} e^{i \lambda x_{0} t} \Phi\left(f_{ \pm}\right)(\lambda t), e^{i z t}\right\rangle \\
& = \pm \frac{(\pm i)^{k}}{2 \pi} \frac{1}{i} \lambda \lambda^{k-1}[f]_{x=x_{0}} \int_{0}^{\infty} t^{k-1} e^{ \pm i z t} d t+o\left(\lambda^{k}\right) \\
& = \pm \frac{(\pm i)^{k-1}}{2 \pi} \lambda^{k}[f]_{x=x_{0}} \int_{0}^{\infty} t^{k-1} e^{ \pm i z t} d t+o\left(\lambda^{k}\right)
\end{aligned}
$$

The last integral is of the form $\int_{0}^{\infty} x^{k-1} e^{i z x}=(i z)^{-k} \Gamma(k)>0, \operatorname{Re}(k)>0, \operatorname{Im}(z)>0$, where $\Gamma(k)$ is the Gama function, $\Gamma(k)=(k-1)$!
Now, we obtain

$$
\begin{aligned}
F^{(k)}\left(x_{0}+\frac{1}{\lambda} z\right)= & \pm \frac{(\pm i)^{k-1}}{2 \pi} \lambda^{k}[f]_{x=x_{0}} i z^{-k}(k-1)!+o\left(\lambda^{k}\right) \\
= & \pm \frac{(\pm i)^{k}}{2 \pi}[f]_{x=x_{0}}(k-1)!\left(\frac{\lambda}{2}\right)^{k}+o\left(\lambda^{k}\right)= \\
& \frac{(-1)^{k}(k-1)!}{2 \pi i}[f]_{x=x_{0}}\left(\frac{\lambda}{z}\right)^{k} o\left(\lambda^{k}\right) \text { as } \epsilon \rightarrow 0^{+}
\end{aligned}
$$

Put $x_{0}+\frac{1}{\lambda} z=z$. When $\lambda \rightarrow 0$ then $z \rightarrow x_{0}$, wo we have

$$
\lim _{z \rightarrow x_{0}, z \in \Delta \theta^{ \pm}\left(x_{0}\right)}\left(z-x_{0}\right)^{k} F^{(k)}(z)=(-1)^{k} \frac{(k-1)!}{2 \pi i}[f]_{x=x_{0}}
$$

Theorem 2.2 : Let $T_{f} \in D_{L^{2}}^{\prime}$ is distribution generated by the differentiable and integrable function $f \in L^{2}$ that have a jump behavior $f\left(x_{0}+\epsilon x\right)=\gamma_{-} H(-x)+\gamma_{+} H(-x)+$ $o(1)$ as $\epsilon \rightarrow 0^{+}$at $x=x_{0}$. Let U be harmonic representation of $f, \operatorname{Imz}>0$ and V is the harmonic conjugate of U. Then

$$
\frac{\partial^{k} U}{\partial x^{k}}(z)=\frac{(k-1)!}{(-1)^{k} \pi}[f]_{x=x_{0}} \operatorname{Im} \frac{1}{\left(z-x_{0}\right)^{k}}+o\left(\left|z-x_{0}\right|^{-k}\right)
$$

$$
\frac{\partial^{k} V}{\partial x^{k}}(z)=\frac{(k-1)!}{(-1)^{k+1} \pi}[f]_{x=x_{0}} R e \frac{1}{\left(z-x_{0}\right)^{k}}+o\left(\left|z-x_{0}\right|^{-k}\right),
$$

as $z \rightarrow x_{0}$ on $\Delta_{\theta}^{+}\left(x_{0}\right), 0<\theta \leq \pi / 2$.
Proof: Harmonic conjugate differ from each other by constant. We may work with any harmonic representation U of f. Indeed, if U and U_{1} are two analytic representations of f, then $U_{2}=U-U_{1}$ represents zero distribution. By the Reflection principle to the real and imaginary parts of U, we have that U_{2} admits a harmonic extension to a neighborhood of x_{0}. Similarly, we get that V_{2} admits a harmonic extension to a neighborhood of x_{0}. Therefore $\frac{\partial^{k} U_{2}}{\partial x^{k}}(z), \frac{\partial^{k} V_{2}}{\partial x^{k}}(z)=O(1)$ in a neighborhood of x_{0}. We get U and V satisfy the required equations if U_{1} and V_{1} satisfy the same equation.
Let F be analytic representation of f. Since $U(z)=F(z)-F(\bar{z})$ and $V(z)=i(F(z)+$ $F(\bar{z})$) for the k-derivative, we have

$$
\frac{\partial^{k} U}{\partial x^{k}}(z)=F^{(k)}(z)-F^{(k)}(\bar{z}) \text { and } \frac{\partial^{k} V}{\partial x^{k}}(z)=-i\left(F^{(k)}(z)+F^{(k)}(\bar{z})\right) .
$$

From Theorem 2.1. we get the required relations.

References

[1] Bremerman H., Raspredelenija, kompleksnije permenenije I preobrazovanija Furje, Izdatelstvo "Mir" Moskva (1968).
[2] Beltrami E. J., Wohlers M. R., Distributions and the boundary values of analytic functions. Academic Press, New York, (1966).
[3] Carmichael R., Mitrovic D., Distributions and analytic functions, New York, (1989).
[4] Dimovski P., Pilipovic S., Vindas J., New distribution spaces associated to translation-invariant Banach spaces, Monatsh Math 177, (2015), 495-515.
[5] Jantcher L., Distributionen, Walter de Gruyter Berlin, New York, (1971).
[6] Manova-Erakovic V. and Reckovski V., A note on the analytic representations of convergent sequences in S', Filomat, 29:6 (2015), 1419-1424.
[7] Vasko Reckovski, Vesna Manova-Erakovikj, Egzona Iseni, Convergence of sequences of functions in $D_{L^{p}}$ and $D_{L^{p}, \eta}, 1 \leq p<\infty$ through their analytic representations, IJMTT, 45:2 (2017), 2231-5373.

