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Abstract

1. Introduction

In 1965, the concept of fuzzy sets was introduced initially by Zadeh [13]. Since then, to

use this concept in topology and analysis many authors have expansively developed the

theory of fuzzy sets and applications. In particular, George and Veeramani [61] have

introduced and studied a notion of fuzzy metric space with the help of continuous t-

norms, which constitutes a slight but appealing modification of the one due to Kramosil

and Michalek [89]. Deschrijver and Kerre [have shown that intuitionistic fuzzy sets can

also be seen as L-fuzzy sets in the sense of Goguen [66]. Using the idea of L-fuzzy

sets [66], Saadati et.al. [148] introduced the notion of L-fuzzy metric spaces with the

help of continuous t-norms as a generalization of fuzzy metric space due to George and

Veeramani [61] and intuitionistic fuzzy metric space due to Park and Saadati [121, 146,

147] and prove a common fixed point theorem for a pair of commuting mappings. Later

on in [145] he introduce the notion of uniform continuity and equicontinuity in an L-
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-fuzzy metric space and prove Uniform continuity theorem for L-fuzzy metric space and

prove Ascoli. Arzela theorem for L-fuzzy metric space. In 2008 [144] he also prove

fuzzy Banach and Edelstein fixed point theorems in generalized fuzzy metric spaces

i.e., L-fuzzy metric spaces for modified definition of Cauchy sequence in George and

Veeramanifs sense. In 2008 Efe [53] prove Bairefs theorem and uniform limit theorem

forL-fuzzy metric spaces and in 2010 Shakeri, Ciric and Saadati [164] prove fixed point

theorem in Partially Ordered L-Fuzzy Metric Spaces which is an extension of Nieto and

Rodriguez- Lopez [111,112] and Ran and Reurings [132].

Adibi et.al. [5] introduced the concept of compatible mappings and proved common

fixed point theorems for four mappings satisfying some conditions in L-fuzzy metric

spaces which results are further generalized by Saadati et.al.[149]. Huang et.al. [70]

prove fixed point theorems for any even number of compatible mappings in complete

L-fuzzy metric spaces.

Branciari [30] initiated the study of contractive conditions of integral type in 2002 and

give integral version of Banach contraction principle which was further generalized by

Rhoades [141]. Several common fixed point theorems for a family of four mappings

satisfying some contractive conditions of integral type were established in [14, 47, 48]

and [12].

In metric fixed point theory, various mathematicians weakened the notion of commu-

tativity by introducing the notions of weak commutativity, compatibility and weak

compatibility and produced a number of fixed point theorems using these notions. It

is worth to mention that every pair of commuting self-maps is weakly commuting, each

pair of weakly commuting self-maps is compatible and each pair of compatible self-maps

is weak compatible but the reverse is not always true. The main object of this chapter

is to prove common fixed point theorem in L-fuzzy metric space for weakly compatible

mappings satisfying integral type contractive condition and property (C).Which is a

generalization of some results Adibi et. al. [5] for this first , we recall some definitions

and known results that will be used in the sequel.

2. Preliminary

Definition 2.1 : Let L = (L,≤L) be a complete lattice, and U a nonempty set called

a universe. An L-fuzzy set L on U is defined as a mapping: U → L. For each u in U ,
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A(u) represents the degree (in L) to which u satisfies A.

Lemma 2.2 : Consider the set L∗ and the operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2). ≤L∗ (y1, y2)⇔ x1 ≤ y1 and x2 ≤ y2,

for every (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, commutative,

associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x, for all x ∈ [0, 1].

These definitions can be straightforwardly extended to any lattice L = (L,≤L). Define

first

0L = inf L and 1L = supL.

Definition 2.3 : A triangular norm (t-norm) on L is a mapping T : L2 → L satisfying

the following conditions:

2.3 (i) (∀x ∈ L)(T (x, 1L) = x)

2.3 (ii) (∀(x, y) ∈ L2)(T (x, y) = T (y, x))

2.3 (iii) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z))

2.3(iv) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′f, y′)).

Definition 2.4 : A t-norm T on L is said to be continuous if for any x, y ∈ L and any

sequence {xn} and {yn} which converge to x and y we have

lim
n→∞

T (xn, yn) = T (x, y).

Example 2.5 : T (x, y) = min(x, y) and T (x, y) = xy are two continuous t- norms on

[0 ,1]. A t-norm can also be defined recursively as an (n + 1) -ary operation (∈ N) by

T 1 = T and

Tn(x1, x2, · · · , xn+1) = T (Tn−1(x1, x2, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ L, 1 ≤ i ≤ n+ 1.

Definition 2.6 : A negation on L is any decreasing mapping N : L → L satisfying

N(0L) = 1L and N(1L) = 0L.

If N(N(x)) = x, for all x ∈ L, then N is called an involutive negation is fixed.

If, for all ∈ [0, 1], Ns(x) = 1− x, we say that Nsis the standard negation on ([0, 1],≤).



62 J. MADHAVI & M. VIJAYA KUMAR

Definition 2.7 : The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space if X is

an arbitrary (non-empty) set, T is a continuous t-norm on L and M is an L-fuzzy set

on X2 × (0,∞) satisfying the following conditions for all x, y, z ∈ X and s, t > 0.

2.7 (i) M(x, y, t) >L 0L.

2.7 (ii) M(x, y, t) = 1L for all t > 0 if and only if x = y

2.7 (iii) M(x, y, t) = M(y, x, t)

2.7 (iv) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0

2.7 (v) M(x, y, .) : (0,∞)→ L is continuous and limt→∞M(x, y, t) = 1L.

In this case M is called an L -fuzzy metric.

Definition 2.8 : Let (X,M, T ) be an L-fuzzy metric space, For t ∈ (0,∞) we define

the open ball B(x, r, t) with center x ∈ X and radius r ∈ L \ {0L, 1L} is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) >L N(r)}.

A subset A ⊆ X is called open if for each x ∈ A, there exists t > 0 and r ∈ L \ {0L, 1L},
such that B(x, r, t) ⊆ A.

Let τM denote the family of all open subsets of X. Then τM is called the topology

induced by the L -fuzzy metric M .

Lemma 2.9 : Let (X,M, T ) be an L-fuzzy metric space. Then, M(x, y, t)is non-

decreasing with respect to t, for all x, y ∈ X.

Definition 2.10 : Let (X,M, T ) be an L-fuzzy metric space and {xn} be a sequence

in X.

(1) {xn} is said to be convergent to a point x ∈ X (denoted by lim
n→∞

xn = x) if

lim
n→∞

M(x, xn, t) = 1L for all t > 0.

(2) {xn} is called a Cauchy sequence if for each ε ∈ L \ {0L} and t > 0, there exists

n0 ∈ N, such that M(xn, xm, t) >L N(ε) for all m ≥ n ≥ n0, (n ≥ m ≥ n0).

(3) A L -fuzzy metric in which every Cauchy sequence is convergent is said to be

complete. Hence forth, we assume that T is a continuous t-norm on the lattice L,

such that for every µ ∈ L \ {0L, 1L}, there is a λ ∈ L \ {0L, 1L}, such that

Tn−1(N(λ), · · · , N(λ)) ≥L N(µ).
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Definition 2.11 : Let (X,M, T ) be an L-fuzzy metric space. M is said to be continuous

functions on X2 × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t),

whenever a sequence {(xn, yn, tn)} in X2 × (0,∞) converges to a point (x, y, t ∈ X2 ×
(0,∞) i.e.

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, , y, t) = 1L

and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma 2.12 : Let (X,M, T ) be an L -fuzzy metric space. Then M is continuous

functions on X2 × (0,∞).

Lemma 2.13 : Let (X,M, T ) be an L -fuzzy metric space. If we define Eλ,M : X2 →
R+ ∪ {0} by

Eλ,M (x, y) = inf{t > 0 : M(x, y, t) >L LN(λ)}

for all λ ∈ L \ {0L, 1L} and x, y ∈ X, then

(1) For all µ ∈ L \ {0L, 1L} there exists λ ∈ L \ {0L, 1L}, such that

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn)

for all x1, x2 · · · , xn ∈ X.

(2) The sequence {xn}n∈N is convergent to x w.r.t. L -fuzzy metric M if and only if

EλM (xn, x)→ 0.

Also the sequence {xn}n∈N is Cauchy w.r.t. L-fuzzy metric M if and only if it is Cauchy

with Eλ,M .

We shall need the following lemma for proof of our main theorem:

Lemma 2.14 : Let (X,M, T ) be a L-fuzzy metric space. If

M(xn, xn+1, t) ≥L M(x0, x1, k
nt)

for some k > 1 and for every n ∈ N. Then sequence {xn} is a Cauchy sequence.

Definition 2.15 : We say that the L-fuzzy metric space (X,M, T ) has property (C),

if it satisfies the following condition:

M(x, y, t) = C,
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for all

t > 0⇒ C = 1L.

Definition 2.16 : Let S and T be two mappings from an L-fuzzy metric space (X,M, T )

into itself and {xn} be a sequence in X such that

lin→∞Sxn = lim
n→∞

Txn = z

for some z ∈ X. Then the mapping S and T are said to be compatible if

lim
n→∞

M(STxn, TSxn, t) = 1L for all t > 0.

Definition 2.17 : Let S and T be mappings from an L -fuzzy metric space (X,M, T )

into itself. The maps S and T are said to be weakly compatible if they commute at

their coincidence points, i.e. if Sp = Tp for some p ∈ X, then

STp = TSp.

Proposition 2.18 : Self mappings S and T of an L -fuzzy metric space (X,M, T ) are

compatible then they are weakly compatible.

In fact Branciari give a following Integral contractive type condition.

For a given ε > 0, there exists a real number c ∈ (0, 1) and a locally Lebesgue-integrable

function g : [0,∞)→ [0,∞) Such that∫ d(fx,fy,t

0
g(t)dt ≤c

∫ d(x,y)

0
g(t)dt and

∈ε0 g(t)dt > 0 for all x, y ∈ X and for eachε > 0.

Also, Branciari-Integral contractive type condition is a generalization of Banach con-

traction map if g(t) = 1 for all t ≥ 0.

3. Main Result

Theorem 3.1 : Let A,B, S and T be self mappings of a compete L fuzzy metric space

(X,M, T ) which has property (C), satisfying:

3.1 (I) A(X) ⊆ T (X), B(X) ⊆ (X) and T (X), S(X) are two closed subsets of X.

3.1 (II) The pairs (A,S) and (B, T ) are weak compatible.
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3.1 (III)
∫M(Ax,By,t)
0 φ(t)dt ≥L

∫M(Sx,Ty,kt)M(Sx,sx,kt)M(Ty,Ty,kt)
φ(t)dt for every x, y ∈

X and some k > 1. Where ϕ : R+ → R is a Lebesgue-integrable mapping which is sum-

able, nonnegative and such that ∫ ε

0
φ(t)dt > 0, ε > 0.

Then A,B, S and T have a unique common fixed point in X.

Proof : Let x0 ∈ X be an arbitrary point in X. By 3.1(I),there is x1, x2 ∈ X such that

y0 = Ax0 = Tx1,

y1 = Bx1 = Sx2.

Inductively, construct sequences {yn} and {xn} in X such that

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2

for n = 0, 1, 2, · · · .
Now, we prove that {yn} is a Cauchy sequence.

Let dm(t) = M(ym, ym+1, t), t > 0. Then, we have∫ d2n(t)

0
φ(t)dt) =

∫ M(y2n,y2n+1,t)M(y2n,y2n,t)(M(y2n+1,y2n+1,t))

φ(t)dt

=

∫ M(Ax2n,Bx2n+1,t)M(Ax2nAx2n,t)M(Bx2n+1,Bx2n+1,t)

φ(t)dt

≥L
∫ M(Sx2n,Tx2n+1,kt)∗1∗!

φ(t)dt

=

∫ M(y2n−1,y2n,kt)

]phi(t)dt

=

∫ d2n−1(kt)

φ(t)dt.

Thus

d2n(t) ≥L d2n−1(kt)

for every m = 2n ∈ N and ∀t > 0.

Similarly for an odd integer m = 2n+ 1, we have d2n+1(t) ≥L d2n(kt).

Hence for every n ∈ N, we have

dn(t) ≥L dn−1(kt).
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That is,∫ M(yn,yn+1,t)

φ(t)dt ≥ L

∫ M(yn−1,yn,kt)M(yn−1,yn−1ktM(yn,yn,kt))

φ(t)dt ≥L

≥L
∫ M(y0,y1,knt)

φ(t)dt.

So, by Lemma 2.14, {yn} is Cauchy and the completeness of X implies {yn} converges

to y in X. That is

lim
n→∞

yn = y

lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1 = lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = y.

As B(X) ⊆ S(X), there is u ∈ X such that Su = y.

By (iii), we have ∫ M(Au,Bx2n+1,t)

φ(t)dt ≥L∫ M(Su,Tx2n+1,kt)M(Su,Su kt)M(Tx2n+1,Tx2n+1,kt)

φ(t)dt.

Since M is continuous, we get(whenever n→∞ in the above inequality):∫ M(Au,y,t)

0
φ(t)dt7geL

∫ M(y,y,kt)∗1∗1
φ(t)dt = 1L.

Thus M(Au, y, t) = 1L,

i.e. Au = y.

Therefore, Au = Su = y.

Since A(X) ⊆ T (X), there is v ∈ X such that Tv = y. Thus,∫ M(y,Bv,t)

0
φ(t)dt =

∫ M(Au,Bv,t)M(Au,Au,t)M(Bv,Bv,t))

φ(t)dt

≥L
∫ M(Su,Tv,kt)

0
φ(t)dt

= 1L.

Hence Tv = Bv = Su = y.

Since (A,S) is weak compatible, we conclude that

ASu = SAu,
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that is

Ay = Sy.

Also (B, T ) is weak compatible then,

TBv = BTv

that is

Ty = By

We now prove that

Ay = y.

By 3.1(III), we have∫ M(Ay,y,t)

φ(t)dt =

∫ M(Ay,Bv,t)M(Ay,Ay,t)M(Bv,Bv,t)

φ(t)dt.

≥L
∫ M(Sy,Tv,kt)∗1∗1

0
φ(t)dt

≥L
∫ M(Ay,y,kn,t)

φ(t)dt.

On the other hand, from Lemma 2.9 we have that∫ M(Ay,y,t)

0
φ(t)dt ≤L

∫ M(Ay,y,knt)

φ(t)dt.

Hence,

M(Ay, y, t) = C for allt > 0.

Since (X,M, T ) has property (C) it follows that

C = 1L,

i.e.,

Ay = y,

therefore

Ay = Sy = y.

Similarly we prove that

By = y.
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By 3.1(III), we have∫ M(y,By,t)

φ(t)dt =

∫ M(Ay,By,t)M(Ay,Ay,t)M(By,By,t)

φ(t)dt.

≥L
∫ M(Sy,Ty,kt)

0
φ(t)dt

=

∫ M(y,By,kt)

φ(t)dt

≥L
∫ M(y,By,knt)

0
φ(t)dt.

On the other hand, from Lemma 2.9 we have that∫ M(y,By,t)

0
φ(t)dt ≤L

∫ M(y,by,knt)

0
φ(t)dt.

Hence, M(y,By, t) = C ∀t > 0.

Since (X,M, T ) has property (C), it follows that C = 1L,

i.e. By = y.

Therefore

Ay = By = Sy = Ty = y.

i.e., y is a comman fixed point of A,B, S and T .

Uniqueness : Let x be another comman fixed point of A,B, S and T

i.e., x = Ax = Bx = Sx = Tx.

Hence ∫ M(y,x,t)

0
φ(t)dt =

∫ M(y,Bx,t)M(y,y,tM(Bx,Bx,t))

φ(t)dt.

≥L
∫ M(Sy,Tx,kt)∗1∗1

φ(t)dt

=

∫ M(y,x,kt)

0
φ(t)dt

≥L
∫ M(y,x,knt)

0
φ(t)dt.

On the other hand, from Lemma 2.9 we have that∫ M(y,x,t)

0
φ(t)dt ≤L

∫ M(y,x,knt)

φ(t)dt.
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Hence,

M(y, x, t) = C ∀ t > 0.

Since (X,M, T ) has property (C), it follows that C = 1L,

i.e. y= x.

Therefore, y is the unique comman fixed point of self maps A,B, S and T .
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