International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 12 No. II (December, 2018), pp. 59-69

FIXED POINT THEOREM IN *L*-FM SPACE SATISFYING A CONTRACTIVE CONDITION OF INTEGRAL TYPE

J. MADHAVI AND M. VIJAYA KUMAR Malla Reddy Engineering College for Women Hyderabad

Abstract

1. Introduction

In 1965, the concept of fuzzy sets was introduced initially by Zadeh [13]. Since then, to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and applications. In particular, George and Veeramani [61] have introduced and studied a notion of fuzzy metric space with the help of continuous tnorms, which constitutes a slight but appealing modification of the one due to Kramosil and Michalek [89]. Deschrijver and Kerre [have shown that intuitionistic fuzzy sets can also be seen as L-fuzzy sets in the sense of Goguen [66]. Using the idea of L-fuzzy sets [66], Saadati et.al. [148] introduced the notion of L-fuzzy metric spaces with the help of continuous t-norms as a generalization of fuzzy metric space due to George and Veeramani [61] and intuitionistic fuzzy metric space due to Park and Saadati [121, 146, 147] and prove a common fixed point theorem for a pair of commuting mappings. Later on in [145] he introduce the notion of uniform continuity and equicontinuity in an L-

(c) http://www.ascent-journals.com

UGC approved journal (Sl No. 48305)

-fuzzy metric space and prove Uniform continuity theorem for L-fuzzy metric space and prove Ascoli. Arzela theorem for L-fuzzy metric space. In 2008 [144] he also prove fuzzy Banach and Edelstein fixed point theorems in generalized fuzzy metric spaces i.e., L-fuzzy metric spaces for modified definition of Cauchy sequence in George and Veeramanifs sense. In 2008 Efe [53] prove Bairefs theorem and uniform limit theorem forL-fuzzy metric spaces and in 2010 Shakeri, Ciric and Saadati [164] prove fixed point theorem in Partially Ordered \mathcal{L} -Fuzzy Metric Spaces which is an extension of Nieto and Rodriguez- Lopez [111,112] and Ran and Reurings [132].

Adibi et.al. [5] introduced the concept of compatible mappings and proved common fixed point theorems for four mappings satisfying some conditions in L-fuzzy metric spaces which results are further generalized by Saadati et.al.[149]. Huang et.al. [70] prove fixed point theorems for any even number of compatible mappings in complete L-fuzzy metric spaces.

Branciari [30] initiated the study of contractive conditions of integral type in 2002 and give integral version of Banach contraction principle which was further generalized by Rhoades [141]. Several common fixed point theorems for a family of four mappings satisfying some contractive conditions of integral type were established in [14, 47, 48] and [12].

In metric fixed point theory, various mathematicians weakened the notion of commutativity by introducing the notions of weak commutativity, compatibility and weak compatibility and produced a number of fixed point theorems using these notions. It is worth to mention that every pair of commuting self-maps is weakly commuting, each pair of weakly commuting self-maps is compatible and each pair of compatible self-maps is weak compatible but the reverse is not always true. The main object of this chapter is to prove common fixed point theorem in \mathcal{L} -fuzzy metric space for weakly compatible mappings satisfying integral type contractive condition and property (C). Which is a generalization of some results Adibi et. al. [5] for this first , we recall some definitions and known results that will be used in the sequel.

2. Preliminary

Definition 2.1 : Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice, and U a nonempty set called a universe. An \mathcal{L} -fuzzy set \mathcal{L} on U is defined as a mapping: $U \to L$. For each u in U, $\mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 2.2 : Consider the set L^* and the operation \leq_{L^*} defined by:

$$L^* = \{ (x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1 \},\$$
$$(x_1, x_2) \le L^* (y_1, y_2) \Leftrightarrow x_1 \le y_1 \text{ and } x_2 \le y_2,$$

for every $(x_1, x_2), (y_1, y_2) \in L^*$. Then (L^*, \leq_{L^*}) is a complete lattice.

Classically, a triangular norm T on $([0,1], \leq)$ is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \to [0,1]$ satisfying T(1,x) = x, for all $x \in [0,1]$. These definitions can be straightforwardly extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define

first

$$0_{\mathcal{L}} = \inf L$$
 and $1_{\mathcal{L}} = \sup L$.

Definition 2.3 : A triangular norm (*t*-norm) on \mathcal{L} is a mapping $T : L^2 \to L$ satisfying the following conditions:

2.3 (i)
$$(\forall x \in L)(T(x, 1_{\mathcal{L}}) = x)$$

2.3 (ii) $(\forall (x, y) \in L^2)(T(x, y) = T(y, x))$
2.3 (iii) $(\forall (x, y, z) \in L^3)(T(x, T(y, z)) = T(T(x, y), z))$

 $2.3(\mathrm{iv}) \ (\forall (x,x',y,y') \in L^4) (x \leq_L x' \ \text{ and } \ y \leq_L y' \Rightarrow T(x,y) \leq_L T(x'f,y')).$

Definition 2.4: A *t*-norm *T* on \mathcal{L} is said to be continuous if for any $x, y \in \mathcal{L}$ and any sequence $\{x_n\}$ and $\{y_n\}$ which converge to x and y we have

$$\lim_{n \to \infty} T(x_n, y_n) = T(x, y).$$

Example 2.5 : $T(x, y) = \min(x, y)$ and T(x, y) = xy are two continuous *t*- norms on [0,1]. A *t*-norm can also be defined recursively as an (n + 1)-ary operation $(\in N)$ by $T^1 = T$ and

$$T^{n}(x_{1}, x_{2}, \cdots, x_{n+1}) = T(T^{n-1}(x_{1}, x_{2}, \cdots, x_{n}), x_{n+1})$$

for $n \ge 2$ and $x_i \in L$, $1 \le i \le n+1$.

Definition 2.6: A negation on \mathcal{L} is any decreasing mapping $N : \mathcal{L} \to \mathcal{L}$ satisfying $N(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $N(1_{\mathcal{L}}) = 0_{\mathcal{L}}$.

If N(N(x)) = x, for all $x \in \mathcal{L}$, then N is called an involutive negation is fixed. If, for all $\in [0, 1]$, $N_s(x) = 1 - x$, we say that Nsis the standard negation on $([0, 1], \leq)$. **Definition 2.7**: The 3-tuple (X, M, T) is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary (non-empty) set, T is a continuous t-norm on \mathcal{L} and M is an \mathcal{L} -fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for all $x, y, z \in X$ and s, t > 0.

2.7 (i) $M(x, y, t) >_L 0_{\mathcal{L}}$. 2.7 (ii) $M(x, y, t) = 1_{\mathcal{L}}$ for all t > 0 if and only if x = y2.7 (iii) M(x, y, t) = M(y, x, t)2.7 (iv) $T(M(x, y, t), M(y, z, s)) \leq_L M(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 02.7 (v) $M(x, y, .) : (0, \infty) \to L$ is continuous and $\lim_{t\to\infty} M(x, y, t) = 1_{\mathcal{L}}$.

In this case M is called an \mathcal{L} -fuzzy metric.

Definition 2.8: Let (X, M, T) be an \mathcal{L} -fuzzy metric space, For $t \in (0, \infty)$ we define the open ball B(x, r, t) with center $x \in X$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ is defined by

$$B(x,r,t) = \{ y \in X : M(x,y,t) >_L N(r) \}.$$

A subset $A \subseteq X$ is called open if for each $x \in A$, there exists t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, such that $B(x, r, t) \subseteq A$.

Let τ_M denote the family of all open subsets of X. Then τ_M is called the topology induced by the \mathcal{L} -fuzzy metric M.

Lemma 2.9 : Let (X, M, T) be an \mathcal{L} -fuzzy metric space. Then, M(x, y, t) is nondecreasing with respect to t, for all $x, y \in X$.

Definition 2.10 : Let (X, M, T) be an \mathcal{L} -fuzzy metric space and $\{x_n\}$ be a sequence in X.

- (1) $\{x_n\}$ is said to be convergent to a point $x \in X$ (denoted by $\lim_{n \to \infty} x_n = x$) if $\lim_{n \to \infty} M(x, x_n, t) = 1_{\mathcal{L}}$ for all t > 0.
- (2) $\{x_n\}$ is called a Cauchy sequence if for each $\epsilon \in L \setminus \{0_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbf{N}$, such that $M(x_n, x_m, t) >_L N(\epsilon)$ for all $m \ge n \ge n_0$, $(n \ge m \ge n_0)$.
- (3) A \mathcal{L} -fuzzy metric in which every Cauchy sequence is convergent is said to be complete. Hence forth, we assume that T is a continuous *t*-norm on the lattice L, such that for every $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, there is a $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, such that

Definition 2.11: Let (X, M, T) be an \mathcal{L} -fuzzy metric space. M is said to be continuous functions on $X^2 \times (0, \infty)$ if

$$\lim_{n \to \infty} M(x_n, y_n, t_n) = M(x, y, t),$$

whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X^2 \times (0, \infty)$ converges to a point $(x, y, t \in X^2 \times (0, \infty))$ i.e.

$$\lim_{n \to \infty} M(x_n, x, t) = \lim_{n \to \infty} M(y_n, y, t) = 1_{\mathcal{L}}$$

and
$$\lim_{n \to \infty} M(x, y, t_n) = M(x, y, t).$$

Lemma 2.12 : Let (X, M, T) be an \mathcal{L} -fuzzy metric space. Then M is continuous functions on $X^2 \times (0, \infty)$.

Lemma 2.13 : Let (X, M, T) be an \mathcal{L} -fuzzy metric space. If we define $E_{\lambda,M} : X^2 \to \mathbf{R}^+ \cup \{0\}$ by

$$E_{\lambda,M}(x,y) = \inf\{t > 0 : M(x,y,t) >_L LN(\lambda)\}$$

for all $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and $x, y \in X$, then

(1) For all $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ there exists $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, such that

$$E_{\mu,M}(x_1, x_n) \le E_{\lambda,M}(x_1, x_2) + E_{\lambda,M}(x_2, x_3) + \dots + E_{\lambda,M}(x_{n-1}, x_n)$$

for all $x_1, x_2 \cdots, x_n \in X$.

(2) The sequence $\{x_n\}_{n \in \mathbb{N}}$ is convergent to x w.r.t. \mathcal{L} -fuzzy metric M if and only if $E_{\lambda M}(x_n, x) \to 0.$

Also the sequence $\{x_n\}_{n \in N}$ is Cauchy w.r.t. \mathcal{L} -fuzzy metric M if and only if it is Cauchy with $E_{\lambda,M}$.

We shall need the following lemma for proof of our main theorem:

Lemma 2.14 : Let (X, M, T) be a \mathcal{L} -fuzzy metric space. If

$$M(x_n, x_{n+1}, t) \ge_L M(x_0, x_1, k^n t)$$

for some k > 1 and for every $n \in \mathbf{N}$. Then sequence $\{x_n\}$ is a Cauchy sequence.

Definition 2.15: We say that the \mathcal{L} -fuzzy metric space (X, M, T) has property (C), if it satisfies the following condition:

$$M(x, y, t) = C,$$

for all

$$t > 0 \Rightarrow C = 1_{\mathcal{L}}.$$

Definition 2.16: Let S and T be two mappings from an \mathcal{L} -fuzzy metric space (X, M, T) into itself and $\{x_n\}$ be a sequence in X such that

$$li_{n\to\infty}Sx_n = \lim_{n\to\infty}Tx_n = z$$

for some $z \in X$. Then the mapping S and T are said to be compatible if

$$\lim_{n \to \infty} M(STx_n, TSx_n, t) = 1_{\mathcal{L}} \text{ for all } t > 0$$

Definition 2.17: Let S and T be mappings from an \mathcal{L} -fuzzy metric space (X, M, T)into itself. The maps S and T are said to be weakly compatible if they commute at their coincidence points, i.e. if $S_p = T_p$ for some $p \in X$, then

$$ST_p = TS_p$$

Proposition 2.18 : Self mappings S and T of an \mathcal{L} -fuzzy metric space (X, M, T) are compatible then they are weakly compatible.

In fact Branciari give a following Integral contractive type condition.

For a given $\epsilon > 0$, there exists a real number $c \in (0, 1)$ and a locally Lebesgue-integrable function $g: [0, \infty) \to [0, \infty)$ Such that

$$\int_0^{d(fx,fy,t} g(t)dt \leq_c \int_0^{d(x,y)} g(t)dt \text{ and }$$

 $\in_0^{\epsilon} g(t)dt > 0$ for all $x, y \in X$ and for each $\epsilon > 0$.

Also, Branciari-Integral contractive type condition is a generalization of Banach contraction map if g(t) = 1 for all $t \ge 0$.

3. Main Result

Theorem 3.1: Let A, B, S and T be self mappings of a compete \mathcal{L} fuzzy metric space (X, M, T) which has property (C), satisfying:

3.1 (I) $A(X) \subseteq T(X)$, $B(X) \subseteq (X)$ and T(X), S(X) are two closed subsets of X. 3.1 (II) The pairs (A, S) and (B, T) are weak compatible.

3.1 (III)
$$\int_0^{M(Ax,By,t)} \phi(t)dt \ge_L \int^{M(Sx,Ty,kt)M(Sx,sx,kt)M(Ty,Ty,kt)} \phi(t)dt \text{ for every } x, y \in \mathbb{R}$$

X and some k>1. Where $\varphi:R^+\to R$ is a Lebesgue-integrable mapping which is sumable, nonnegative and such that

$$\int_0^\epsilon \phi(t)dt > 0, \ \epsilon > 0.$$

Then A, B, S and T have a unique common fixed point in X.

Proof: Let $x_0 \in X$ be an arbitrary point in X. By 3.1(I), there is $x_1, x_2 \in X$ such that

$$y_0 = Ax_0 = Tx_1,$$
$$y_1 = Bx_1 = Sx_2.$$

Inductively, construct sequences $\{y_n\}$ and $\{x_n\}$ in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1}, y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$$

for $n = 0, 1, 2, \cdots$.

Now, we prove that $\{y_n\}$ is a Cauchy sequence. Let $d_m(t) = M(y_m, y_{m+1}, t), t > 0$. Then, we have

$$\int_{0}^{d_{2n}(t)} \phi(t)dt) = \int^{M(y_{2n}, y_{2n+1}, t)M(y_{2n}, y_{2n}, t)(M(y_{2n+1}, y_{2n+1}, t))} \phi(t)dt$$

$$= \int^{M(Ax_{2n}, Bx_{2n+1}, t)M(Ax_{2n}Ax_{2n}, t)M(Bx_{2n+1}, Bx_{2n+1}, t)} \phi(t)dt$$

$$\geq L \int^{M(Sx_{2n}, Tx_{2n+1}, kt)*1*!} \phi(t)dt$$

$$= \int^{M(y_{2n-1}, y_{2n}, kt)} [phi(t)dt]$$

$$= \int^{d_{2n-1}(kt)} \phi(t)dt.$$

Thus

$$d_{2n}(t) \ge_L d_{2n-1}(kt)$$

for every $m = 2n \in \mathbb{N}$ and $\forall t > 0$.

Similarly for an odd integer m = 2n + 1, we have $d_{2n+1}(t) \ge_L d_{2n}(kt)$. Hence for every $n \in \mathbb{N}$, we have

$$d_n(t) \ge_L d_{n-1}(kt).$$

That is,

$$\int^{M(y_n, y_{n+1}, t)} \phi(t) dt \geq {}_L \int^{M(y_{n-1}, y_n, kt)M(y_{n-1}, y_{n-1}ktM(y_n, y_n, kt))} \phi(t) dt \geq_L \\ \geq_L \int^{M(y_0, y_1, k^n t)} \phi(t) dt.$$

So, by Lemma 2.14, $\{y_n\}$ is Cauchy and the completeness of X implies $\{y_n\}$ converges to y in X. That is

$$\lim_{n \to \infty} y_n = y$$

 $\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} Ax_{2n} = \lim_{n \to \infty} Tx_{2n+1} = \lim_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} Bx_{2n+1} = \lim_{n \to \infty} Sx_{2n+2} = y.$ As $B(X) \subseteq S(X)$, there is $u \in X$ such that Su = y. By (iii), we have

$$\int^{M(Au, Bx_{2n+1}, t)} \phi(t) dt \ge_L$$
$$\int^{M(Su, Tx_{2n+1}, kt)M(Su, Su \ kt)M(Tx_{2n+1}, Tx_{2n+1}, kt)} \phi(t) dt.$$

Since M is continuous, we get(whenever $n \to \infty$ in the above inequality):

$$\int_0^{M(Au,y,t)} \phi(t) dt 7ge_L \int^{M(y,y,kt)*1*1} \phi(t) dt = 1_{\mathcal{L}}.$$

Thus $M(Au, y, t) = 1_{\mathcal{L}}$,

i.e.
$$Au = y$$
.

Therefore, Au = Su = y.

Since $A(X) \subseteq T(X)$, there is $v \in X$ such that Tv = y. Thus,

$$\int_{0}^{M(y,Bv,t)} \phi(t)dt = \int^{M(Au,Bv,t)M(Au,Au,t)M(Bv,Bv,t))} \phi(t)dt$$
$$\geq_{L} \int_{0}^{M(Su,Tv,kt)} \phi(t)dt$$
$$= 1_{\mathcal{L}}.$$

Hence Tv = Bv = Su = y.

Since (A, S) is weak compatible, we conclude that

$$ASu = SAu,$$

66

that is

$$Ay = Sy.$$

Also (B,T) is weak compatible then,

$$TBv = BTv$$

that is

$$Ty = By$$

We now prove that

$$Ay = y$$

By 3.1(III), we have

$$\int^{M(Ay,y,t)} \phi(t)dt = \int^{M(Ay,Bv,t)M(Ay,Ay,t)M(Bv,Bv,t)} \phi(t)dt.$$
$$\geq_L \int_0^{M(Sy,Tv,kt)*1*1} \phi(t)dt$$
$$\geq_L \int^{M(Ay,y,k^n,t)} \phi(t)dt.$$

On the other hand, from Lemma 2.9 we have that

$$\int_0^{M(Ay,y,t)} \phi(t)dt \leq_L \int^{M(Ay,y,k^nt)} \phi(t)dt.$$

Hence,

M(Ay, y, t) = C for all t > 0.

Since (X, M, T) has property (C) it follows that

 $C = 1_{\mathcal{L}},$

i.e.,

$$Ay = y,$$

therefore

$$Ay = Sy = y.$$

Similarly we prove that

By = y.

By 3.1(III), we have

$$\int^{M(y,By,t)} \phi(t)dt = \int^{M(Ay,By,t)M(Ay,Ay,t)M(By,By,t)} \phi(t)dt.$$
$$\geq_L \int_0^{M(Sy,Ty,kt)} \phi(t)dt$$
$$= \int^{M(y,By,kt)} \phi(t)dt$$
$$\geq_L \int_0^{M(y,By,k^nt)} \phi(t)dt.$$

On the other hand, from Lemma 2.9 we have that

$$\int_0^{M(y,By,t)} \phi(t)dt \leq_L \int_0^{M(y,by,k^nt)} \phi(t)dt.$$

Hence,
$$M(y, By, t) = C \quad \forall t > 0.$$

Since (X, M, T) has property (C), it follows that $C = 1_{\mathcal{L}}$, i.e. By = y. Therefore

$$Ay = By = Sy = Ty = y.$$

i.e., y is a comman fixed point of A, B, S and T.

Uniqueness : Let x be another comman fixed point of A, B, S and T i.e., x = Ax = Bx = Sx = Tx.

Hence

$$\int_{0}^{M(y,x,t)} \phi(t)dt = \int^{M(y,Bx,t)M(y,y,tM(Bx,Bx,t))} \phi(t)dt.$$
$$\geq_{L} \int^{M(Sy,Tx,kt)*1*1} \phi(t)dt$$
$$= \int_{0}^{M(y,x,kt)} \phi(t)dt$$
$$\geq_{L} \int_{0}^{M(y,x,k^{n}t)} \phi(t)dt.$$

On the other hand, from Lemma 2.9 we have that

$$\int_0^{M(y,x,t)} \phi(t)dt \le_L \int^{M(y,x,k^nt)} \phi(t)dt.$$

Hence,

$$M(y, x, t) = C \quad \forall \ t > 0.$$

Since (X, M, T) has property (C), it follows that $C = 1_{\mathcal{L}}$,

i.e. y = x.

Therefore, y is the unique comman fixed point of self maps A, B, S and T.

References

- Ait Taleb A. and Hanebaly E., A fixed point theorem and its application to integralequations in modular function spaces, Proc. Amer. Math. Soc., 128 (2000), 419-426.
- [2] Branciari A., A fixed point theorem for mappings satisfying a general contractivecondition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536.
- [3] Jungck G., Commuting mappings and fixed point, Amer. Math. Monthly, 83 (1976), 261-263.
- [4] Jungck G., Compatible mappings and common fixed point, Int. J. Math. Math. Sci., 9 (1986), 771-779.
- [5] Kaneko H. and Sessa S., Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. Math. Math. Sci., 12 (1989), 257-262.
- [6] Kaneko H., Single-valued and multi-valued f-contractions, Boll. Un. Mat. Ital., 6 (1985), 29-33.
- [7] Khamsi M. A., Kozlowski W. M. and Reich S., Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1999), 935-953.
- [8] Razani A., Existence of fixed point for the nonexpansive mapping of intuitionisticfuzzy metric spaces, Chaos, Solitons and Fractals, 30 (2006), 367-373.
- [9] Razani A., Nabizadeh E., Beyg Mohammadi M. and Homaeipour S., Fixed points of nonlinear an asymptotic contractions in the modular space, Abst. Appl. Anal., (2007), Article ID 40575, 10 pages.
- [10] Rhoades B. E., Two fixed point theorems for mappings satisfying a general contractivecondition of integral type, Int. J. Math. Math. Sci., 63 (2003), 4007-4013.
- [11] Singh S. P. and Meade B. A., On common fixed point theorem, Bull. Austral. Math. Soc., 16 (1977) 49-53.24 Razani and Moradi.
- [12] Vijayaraju P., Rhoades B. E. and Mohanra R., A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 15 (2005), 2359-2364.
- [13] Zada A., Shah R., Li T., Integral Type Contraction and Coupled Coincidence Fixed Point Theorems for Two Pairs in Gmetric Spaces, Hacet. J. Math. Stat., in press.