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Abstract

Recently much attention has been paid to the strong rate of convergence of
Euler-Maruyama scheme for SDEs with irregular coefficients, driven by α-stable-
type processes. However, most of the studies carried out so far deal with the case
where α ∈ (1, 2). There are few works, if any, on the case where α ∈ (0, 1]. The
aim of this paper is to contribute in narrowing this gap. Consider the stochastic
differential equation (SDE)

dXt = x+ b(t,Xt)dt+
∫∞
0

∫
|z|≤1 1[0, σ(s,Xs− ,z)]

(r)zÑ (dz, dr, dt)

+
∫∞
0

∫
|z|>1

1[0, σ(s,Xs− ,z)
](r)zN (dz, dr, dt), X0 = x ∈ Rd.

(0.1)

This SDE is a more general equation than the standard SDEs usually used in
the literature on the strong rate of convergence of the Euler-Maruyama scheme.
Furthermore, the driving process here is assumed to be an α-stable-type process,
with α ∈ (0, 1]. We determine the strong rate of convergence of the Euler-Maruyama
scheme for the SDE (0.1) under weak conditions on the coefficients. For example,
the drift coefficient b is simply required to be a function in Besov spaces, which is

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Key Words : Stochastic differential equations, Strong rate of convergence, Euler-
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equation.
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a weaker condition than, but covers, the Hölder continuity requirement. This work
thus extends many of the recent studies on the strong rate of convergence of Euler-
Maruyama scheme for SDEs with irregular coefficients and driven by α-stable-type
processes. Our method is based on the properties of the solution of the backward
Kolmogorov equation associated with this SDE.

1. Introduction

Consider the stochastic differential equation

dXt = x+ b(t,Xt)dt+
∫∞
0

∫
|z|≤1 1[0, σ(s,Xs− ,z)](r)zÑ (dz, dr, dt)

+
∫∞
0

∫
|z|>1 1[0, σ(s,Xs− ,z)](r)zN (dz, dr, dt), X0 = x ∈ Rd.

(1.1)

where b : [0, T ] × Rd −→ Rd is a Borel function and σ : R+ × Rd × Rd −→ R is the

jump intensity kernel. N (dz, dr, dt) is a Poisson measure on Rd × [0,∞) × [0,∞) and

Ñ (dz, dr, dt) := N (dz, dr, dt) − ν(dz)drdt, the corresponding Poisson random measure

where ν is a Lévy measure. Note that, here, the jump intensity kernel σ(t, x, z) is state-

dependent and the the driving process is a markov process, which is not necessarily a

Lévy motion. The SDE (1.1) is thus a more general SDE than the standard SDEs often

considered in the literature. More details on this SDE can be found in [15].

The solution of (1.1), when it exists, cannot always be found through analytical means.

Often one has to resort to numerical methods. Our reference for numerical methods

for SDEs include the books [6, 13]. The simplest and most used numerical scheme for

approximating the solutions of SDEs remains the explicit Euler-Maruyama scheme (see

Section 2.4). The aim of this paper is to determine the strong rate of convergence of the

Euler-Maruyama scheme for the SDE (1.1) under mild conditions on the drift function

b. Our method is based on regularity properties of the solution of the parabolic partial

differential equation

∂tu+ Lσνu− λu+ b.∇u = −f, u(0, x) = 0. (1.2)

where λ > 0 is a parameter and b, f : [0, 1] × Rd −→ Rd are Borel functions. Here the

operator Lσν is defined by

Lσνf(x) =

∫
Rd

(
f(x+ z)− f(x)− 1{α≥1}1{|z|≤1}z.∇f(x)

)
σ(t, x, z)ν(dz) (1.3)

There are many interesting results on the strong rate of convergence of the Euler-

Maruyama approximation for SDEs which allow non-globally Lipschitz coefficients. We
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refer to [4, 12, 8] and the references therein for a review of the work done on the strong

rate of convergence of the Euler-Maruyama approximations of SDEs driven by a Wiener

motion and to [14, 5, 3, 8, 10, 7] and the references therein for more information on the

work done on the strong rate of convergence of the Euler-Maruyama approximation to

the solution of SDEs with jumps.

Let us remark that the field of partial differential equations (PDEs) provides useful

tools for investigating the rate of convergence of a numerical scheme. For example,

Mikulevičius and Platen in [9] used the backward Kolmogorov equation to study the

weak rate of convergence of the Euler Maruyama scheme when the coefficients are

β-Hölder continuous. The results of [9] were generalised in [11] to the case of non-

degenerate SDEs driven by Lévy processes. However, Pamen and Taguchi [8] seem to

be the first to use the backward Kolmogorov equations to estimate the strong rate of

convergence of SDEs with irregular coefficients. Since then the idea has been used by

many authors to investigate the strong convergence and the strong rate of convergence

of the Euler-Maruyama scheme. In the continuous case, Bao et al.(2016) [1] has used

the idea to extend the result of [8] to the case of SDEs with Hölder-Dini continuous

coefficients and possibly unbounded drift. Dareiotis and Gerencsér (2018) also used

this approach. In the case of SDEs with jumps, Mikulevičius and Xu [10] extended the

result of [8] to the case of SDEs with non constant diffusion using this same technique.

Very recently, using the same idea, Kühn and Schilling [7] extended the result of [8] to

the case where the driving process Lt belongs to a wide class of Lévy processes.

We note that most of the research on the strong rate of convergence of the Euler-

Maruyama approximation to the solution of SDEs with jumps has focused on sub-

critical SDEs. There are much fewer studies on the supercritical SDEs in the literature.

Motived by the recent work of [15], we are going to use the PDE approach introduced

in [8] to estimate the strong rate of convergence the Euler-Maruyama approximation to

the solution to the SDE (1.1) under some mild conditions on the coefficients of (1.1).

More specifically, we assume that the drift coefficient b is a function in the Besov space

Bβ
p′,q′(R

d). For information on functions in the non-homogeneous Besov spaces, one may

consult [15]. The present work thus extends the works of [8, 7, 10].

Notations and Assumptions:

We adopt the notations and assumptions of [15, 8]. We use the standard notation ∇f
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to denote the vector of partial derivatives with respect to the space variable and Dtf

to indicate the time derivative of f . For a, b, R > 0 ∈ R, we use a ∧ b for min{a, b},
a∨ b for max{a, b}, a+ for max{a, 0} and BR for the ball of centre 0 and radius R, i.e.,

BR := {x ∈ Rd : |x| ≤ R}. If F is a class of functions then C([a, b],F) denotes the space

of all functions f : [a, b]× Rd −→ Rk such that f(t, .) ∈ F for all t ∈ [a, b]. We mention

some function spaces:

• Cb(Rd;Rk) denotes the space of bounded continuous functions f : Rd −→ Rk. For

a measurable function f , the supremum norm is defined ‖f‖∞ := supx∈Rd |f(x)|.

• If β ∈ (0, 1] and f : [0, T ]×Rd −→ Rd is a function, we define the Hölder semi-norm

by

[f ]β := sup
x 6=y

|f(x)− f(y)|
|x− y|β

;

and

‖f‖
L∞T C

β
b

:= sup
(t,x)∈[0,T ]×Rd

|f(t, x)|+ sup
t∈[0,T ]

[f(t)]β

• For p′ ∈ [1,∞], we write L∞p′ (T ) := L∞([0, T ];Lp
′
(Rd)) with norm

‖f‖L∞
p′ (T )

:= sup
t∈[0,T ]

‖f(t, .)‖p′

• Given β ∈ R and p′, q′ ∈ [1,∞], we denote the non-homogeneous space of Besov

space by Bβ
p′,q′(R

d)). More information on Besov spaces can be found in [15] and

the references therein. If f ∈ L∞([0, T ];Bβ
p′,q′(R

d)), then the norm of f is given

by

‖f‖
L∞T B

β

p′,q′
:= sup

t∈[0,T ]
‖f(t, .)‖

Bβ
p′,q′

.

• For 0 < α < 2, we denote the set of all non-degenerate non local symmetric stable

Lévy measures να by Lα.

We adopt the following assumptions of [15].

Assumption 1.1 : Assumption on the Lévy measure: we assume that

• (Hν
0 ): the Lévy measure ν is of α-stable type with α ∈ (0, 1],
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• (Hν
1 ): ν(Bc

1) <∞ and there exist ν1, ν2 ∈ Lα such that

ν1(A) ≤ ν(A) ≤ ν2(A), ∀A ⊆ B1,

• Hν
2 : there exist γ ∈ [0, 1] and γ∞ > 0 such that∫

|z|≤1
|z|1+γν(dz) <∞ and

∫
|z|>1

|z|γ∞ν(dz) <∞.

Assumption 1.2 : Regularity Assumptions on the drift b: We assume that the drift

coefficient b is a function i L∞(R+;Bβ
p′,∞) where

β > 1− α

2
and

2d

α
< p′ ≤ ∞.

Assumption 1.3 : Regularity Assumptions on σ: assume that

• (Hσ
1 ) : there exist constants κ0, κ1 > 0, κ2 ≥ 1 such that

κ0 ≤ σ(t, x, z) ≤ κ1, ∀ (t, x, z) ∈ R+ × Rd × Rd

and for all (t, z) ∈ R+ × Rd and all θ ∈ (0, 1] we have

|σ(t, x, z)− σ(t, y, z)| ≤ κ2|x− y|θ, with |x− y| ≤ 1.

• (Hσ
2 ) : there exists a function % ∈ B0

q′,∞(Rd) with q′ > d
α such that for every t > 0

and almost all x, y ∈ Rd we have∫
Rd
|σ(t, x, z)− σ(t, y, z)| (|z| ∧ 1)ν(dz) ≤ |x− y|(%(x) + %(y)).

Under these assumptions, the existence and uniqueness of the strong solution of the SDE

(1.1) are guaranteed by [15, Theorem 2.6]. The objective of this work is to determine

the strong rate of convergence of the Euler-Maruyama approximation to the solution

of the SDE (1.1) under the above assumptions. As stated above, the condition b ∈
L∞(R+;Bβ

p′,∞) is weaker than the condition b ∈ Cβb (Rd) imposed on the drift in, e.g.,

[8, 10, 7].

The remaining part of this work is organized as follows. In section 2 we gather prelim-

inary results necessary for the proof of the results of this work. In section 3, we state

the main results of this paper. Finally, in section 4, we prove the main theorems of this
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paper.

2. Preliminaries

2.1 Moments estimates for the Process : Let (Ω,F , P ) be a probability space. A

process Zt : Ω −→ Rd is said to be a stable type process if Zt is a pure jump process

the jump intensity kernel of which is comparable to that of one or more stable processes

(see [15]. Throughout this section we assume that ν is a Lévy measure of α-stable type.

We set

Z1
t :=

∫ t

0

∫ ∞
0

∫
|z|≤1

1[0, σ(s,x,z)](r)zÑ (dz, dr, dt)

and

Z2
t :=

∫ t

0

∫ ∞
0

∫
|z|≤1

1[0, σ(s,x,z)](r)zÑ (dz, dr, dt).

The moments estimates of Z1
t and Z2

t play an important role in the proof of the main

results of this work. Let Zt = Z1
t +Z2

t . The following Lemma is essential for this study.

Lemma 2.1 : Assume that the assumptions (1.1) and (1.3) hold. Then for any p > 0,

there exists a constant C depending on p, d, κ1, γ, γ∞, κ1, ν2(B1), ν(Bc
1) such that for

any t ∈ [0, T ],

E

[
sup

S≤t≤T
|Zt|p

]
≤

{
Ct

p
2 if p > 1

Ct
p
α if p < α ∈ (0, 1]

Proof : We prove Lemma 2.1 for the constant coefficients case σ = σ0(s, z). The

prove for the variable coefficients case is similar. Using Doob’s maximal inequality and

assumption (1.1), it follows that

E

[
sup

0≤t≤T
|Z1
t |p
]
≤ CpE

(∫ t

0

∫ ∞
0

∫
|z|≤1

1[0, σ(s,z)](r)|z|2drν(dz)ds)

) p
2


≤ CpE

(∫ t

0

∫
|z|≤1

σ(s, z)|z|γν(dz)ds)

) p
2


≤ Cp

(
κ1

∫
|z|≤1

|z|γν(dz)

) p
2 (∫ t

0
ds)

) p
2

≤ Cp,κ1,Cν,γ t
p
2 (2.1)

with a similar inequality for the process Z2
t . Thus for any p ≥ 1 there exists C =
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C(p, κ0, κ1) such that

E

[
sup

0≤t≤T
|Zt|p

]
≤ Cp,κ1,κ0,γ,γ∞t

p
2

In the case where p ∈ (0, 1) we use [[7], Theorem 3.1(i)]:

E

[
sup

0≤t≤T
|Z1
t |p
]

:= E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|≤1

1[0, σ(s,z)](r)zÑ (dz, dr, dt)

∣∣∣∣∣
p]

≤ CpE

(∫ t

0

∫ ∞
0

∫
|z|≤1

1[0, σ(s,z)](r)|z|αdrν(dz)ds)

) p
α


≤ CpE

(∫ t

0

∫
|z|≤1

σ(s, z)|z|αν(dz)ds)

) p
α

 ≤ Cp,κ1,α,ν2(B1)t
p
α

with a similar inequality for the process Z2
t . Thus for all p ∈ (0, 1), we have

E

[
sup

0≤t≤T
|Zt|p

]
≤ Cp,κ1,κ0,ν1(Bc1),ν2(B1)t

p
α

The proof is complete. 2

2.2 The PDE associated with SDE (1.1) : The method we are going to use for

determining the strong rate of convergence of the Euler Maruyama approximations

relies heavily on the regularity properties of the solution of the backward Kolmogorov

equation associated with the SDE. Following [15], we consider the linear parabolic partial

differential equation

∂tu+ Lσνu− λu+ b.∇u = −f, u(0, x) = 0. (2.2)

where Lσν is the infinitesimal generator defined by (1.3), λ > 0 is a parameter and

b, f : [0, 1] × Rd −→ Rd are Borel functions. In this paper we refer to the partial

differential equation (2.2) as the backward Kolmogorov equation associated with SDE

(1.1). The existence, uniqueness and properties of the strong solution to the integro

differential equation (2.2) are studied in [[15], Theorems 4.3, 4.6, 4.8 and 4.9]. The

following Lemma is a direct consequence of [[15], Theorem 4.6].

Lemma 2.2 : Assume that 0 < α ≤ 1 and let hypothesis (Hσ
1 ) hold. Suppose that

b ∈ L∞([0, T ];Bβ
p′,∞(Rd)) with β > 1 − α and d

α+β−1 ∨ 2 < p′ ≤ ∞. Let λ ≥ 0 and
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f ∈ L∞([0, T ];Bγ
q′,∞(Rd)) with γ ∈ [0, β], 2 ≤ q′ ≤ p′ and q′ < ∞. Then for all

ε ∈ (0, 1), the unique solution u ∈ L∞([0, T ];Bα+γ
q′,∞(Rd)) to the PDE

∂tu+ (Lσν − λ)u+ b.∇u = −f, u(0, x) = 0.

satisfies the inequality

‖u‖∞ + ‖∇u‖∞ ≤ ε ≤
1

2
. (2.3)

Proof : By [[15], Theorem 4.3 and 4.6] for all θ ∈ [0, α + γ), the unique solution,

u ∈ L∞([0, T ];Bα+γ
q′,∞(Rd)) to the PDE (2.2) satisfies

‖u(t, .)‖L∞T Bθq′,∞ ≤ Cλ ‖f(t, .)‖L∞T Bγq′,∞ . (2.4)

for some constant Cλ such that Cλ −→ 0 as λ −→∞. Since λ > 0 in [[15], Theorem 4.3]

is arbitrary, it can be selected so that Cλ ≤ ε
‖f(t,.)‖

L∞
T
B
γ
q′,∞

≤ 1
2 . Since L∞p′ (R

d) ⊂ B0
q′,∞,

the result then follows from the embedding Theorem given in [15], i.e.,

B
β+ d

p′

p′,q′ (Rd) ↪→ Cβb (Rd) (2.5)

The proof is complete. 2

The following corollary give the properties of the solutions of the PDE (2.2) in the case

q′ =∞. In this case Bβ
∞,∞(Rd) is a Hölder space.

Corollary 2.3 : Assume that 0 < α ≤ 1. Assume that b is bounded and β-Hölder

continuous in x with β ∈ (0, 1) and α + β > 1. Let λ > 0, and f ∈ L∞([0, T );Cγb (Rd))
with γ ∈ [0, θ∧β]. Then, for all ε ∈ (0, 1), the unique solution u ∈ L∞([0, T ];Bα+γ

∞,∞(Rd))
to the PDE

∂tu+ (Lσν − λ)u+ b.∇u = −f, u(0, x) = 0.

satisfies the inequality

‖u‖∞ + ‖∇u‖∞ ≤ ε ≤
1

2
. (2.6)

Proof : It is enough to let q = ∞ in Lemma 2.2 and use the fact that Bβ
∞,∞(Rd) =

Cβb (Rd) (see [15]). 2

2.3 The transformed equation : Let u be the solution of the backward Kolmogorov

equation (2.2) with f replaced by b, i.e.,

∂tu+ (Lσν − λ)u+ b.∇u = −b, u(0, x) = 0.
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For any t ∈ [0, T ], consider the mapping T : Rd −→ Rd defined by Tt(x) = x + u(t, x).

Then T is C1-diffeomorphism T −1, with

1

2
≤ ‖∇T ‖∞, ‖∇T ‖−1∞ ≤ 2. (2.7)

(see [15]). We now introduce a new SDE which will play an important role in the study

of the strong rate of convergence of SDE (1.1). Let Xt denote the solution of the SDE

(1.1). Then, by [[15], Lemma 5.5], the process Yt := Tt(Xt) = Xt + u(t,Xt) is a strong

solution to the SDE

Yt = Tt(x) +

∫ t

0
b̃(s, Ys)ds+

∫ t

0

∫ ∞
0

∫
|z|≤1

1[0,σ̃(s,z)](r)zÑ (dz, dr, ds)

+

∫ t

0

∫ ∞
0

∫
|z|>1

1[0,σ̃(s,z)](r)zN (dz, dr, dt) (2.8)

where

b̃(t, x) := λu(t, T −1t (x))−
∫
|z|>1

(
u(t, T −1t (x) + z)− u(t, T −1t (x))

)
σ̃(t, z)ν(dz) (2.9)

and

gt(x, z) := Tt(T −1t (x) + z)− x, σ̃(t, z) := σ(t, z). (2.10)

In this paper we refer to the SDE (2.8) as the auxiliary SDE associated with SDE (1.1).

The advantage of the auxiliary SDE (2.8) over the original SDE (1.1) is that it has more

regularity. The coefficients b̃ for example satisfies the following conditions.

Lemma 2.4 : Let the hypotheses Lemma 2.2 hold. Then the coefficients b̃ in the

transformed equation (2.8) satisfy the inequality∣∣∣b̃(t, x)− b̃(t, y)
∣∣∣ ≤ ε (λ+ κ2ν(Bc

1)) |x− y|

in the constant coefficients case where σ = σ0(t, z), and∣∣∣b̃(t, x)− b̃(t, y)
∣∣∣ ≤ 2ε

(
λ+ %(T −1(x)) + %(T −1(y)

)
|y − x|

in the variable coefficients case, σ = σ(t, x, z)
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Proof : We use the MVT, hypothesis Hσ
2 and Lipschitz properties of the mappings Tt

and T −1t . In the constant coefficients case we have

b̃(t, x)− b̃(t, y) := λu(t, T −1t (x))− λu(t, T −1t (y))

−
∫
|z|>1

(
u(t, T −1t (x) + z)− u(t, T −1t (x))

)
σ̃(t, z)ν(dz)

+

∫
|z|>1

(
u(t, T −1t (y) + z)− u(t, T −1t (y))

)
σ̃(t, z)ν(dz).

Thus∣∣∣b̃(t, x)− b̃(t, y)
∣∣∣ ≤ λ

∣∣u(t, T −1t (x))− u(t, T −1t (y))
∣∣

+ε
∣∣T −1t (x)− T −1t (y)

∣∣ ∫
|z|>1

σ̃(t, z)ν(dz) ≤ 2ε (λ+ κ2ν(Bc
1)) |x− y| .

where we have used (2.7). In the variable coefficient case, we have∣∣∣b̃(t, x)− b̃(t, y)
∣∣∣ ≤ λε

∣∣T −1(x)− T −1(y)
∣∣

+ε

∫
|z|>1

∣∣σ(t, T −1(y), z)− σ(t, T −1(x), z)
∣∣ (|z| ∧ 1)ν(dz)

≤ λε
∣∣T −1(x)− T −1(y)

∣∣+ ε
∣∣T −1(y)− T −1(x)

∣∣ (%(T −1(x)) + %(T −1(y))

≤ 2ε
(
λ+ %(T −1(x)) + %(T −1(y)

)
|y − x| .

where we have used the hypothesis (Hσ
2 ). The proof is complete. 2

2.4 Euler-Maruyama Approximation : Suppose there exists a probability space

(Ω,F , P ) on which one can define a stable-type process Zt and a process Xt such that

the SDE (1.1) is satisfied. Then the continuous Euler-Maruyama scheme for (1.1) is

given by

X
(n)
t = x+

∫ t

0
b(s,X

(n)
ηn(s)

)ds+

∫ t

0

∫ ∞
0

∫
|z|≤1

1
[0, σ(s,X

(n)
η(s)

,z)]
(r)zÑ (dz, dr, ds)

+

∫ t

0

∫ ∞
0

∫
|z|>1

1
[0, σ(s,X

(n)
η(s)

,z)]
(r)zN (dz, dr, ds) (2.11)

where η(s) = kT
n , s ∈

[
kT
n ,

(k+1)T
n

]
. The following Lemma plays an important role in

the proof of the main result.

Lemma 2.5 : Let the hypotheses of assumptions (1.2), (1.3) hold. Suppose, in addi-

tion, that b is bounded. Then for any p ≥ 0 there exists a constant C depending on
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p, d, T, ‖b‖L∞
p′ (T )

such that

E

[
sup

0≤t≤T

∣∣∣X(n)
t −X(n)

ηn(t)

∣∣∣p] ≤


C

n
p
2

if p > 1

C

n
p
α

if p ≤ α ∈ (0, 1].

Proof : Using [[15], Theorem 2.6] and applying Jensen’s and Hölder inequalities and

taking supremum and expectation, we have

E

[
sup

0≤t≤T

∣∣∣X(n)
t −Xηn(t)

∣∣∣p]

≤ 3p−1E

[
sup

0≤t≤T
(t− ηn(t))p−1

∫ t

ηn(t)
sup

0≤u≤s

∣∣∣b(u,X(n)
ηn(u)

)
∣∣∣p ds]

+ 3p−1E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

ηn(t)

∫ ∞
0

∫
|z|≤1

1
[0,σ(s,X

(n)
s ,z)]

(r)zÑ (dz, dr, dt)

∣∣∣∣∣
p]

+ 3p−1E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

ηn(t)

∫ ∞
0

∫
|z|>1

1
[0,σ(s,X

(n)
s ,z)]

(r)zN (dz, dr, dt)

∣∣∣∣∣
p]

≤ 3p−1T p
‖b‖pL∞p
np

+ 3p−1E

[
sup

0≤t≤T

∣∣Zt−ηn(s)∣∣p
]

where Zt = Z1
t + Z2

t as defined in subsection (2.1). The result follows from Lemma

(2.1). 2

The following Lemma is essential for the prove of the results of this work.

Lemma 2.6 : Assume that the hypotheses of assumptions (1.1) - (1.3) hold. Then for

any p > 0, there exists C > 0 such that for any t ∈ [0, T ], there exists a constant C such

that for all n ∈ N

E

[
sup

0≤t≤T

∣∣∣Xt −X(n)
t

∣∣∣p] ≤ CE

[
sup

0≤t≤T

∣∣∣Yt − T (X
(n)
t )

∣∣∣p] .
Proof : Since the mapping T −1 is Lipschitz continuous, it holds that∣∣∣Xt −X(n)

t

∣∣∣ :=
∣∣∣T −1(Yt)− T −1(T (X

(n)
t ))

∣∣∣ ≤ C ∣∣∣Yt − T (X
(n)
t )

∣∣∣ .
Now the result follows by taking the supremum and then expectation on both sides of

the above inequality. 2
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3. Main results

The following theorems constitute the result of this paper. Theorem 3.1 determines the

strong rate of convergence of the Euler-Maruyama approximation X
(n)
t to the solution

of (1.1) in the case where b is Hölder continuous.

Theorem 3.1 : Assume that 0 < α ≤ 1 and the hypotheses Hσ
1 and Hσ

2 hold. Assume

that b is bounded, η-Hölder continuous in the time variable and β-Hölder continuous

in x with β ∈ (0, 1] and α + β > 1. Then there exists a constant C depending on

p, d, T,K, ε, ν(B1), ‖b‖L∞
p′ (T )

and ‖%‖L∞T B0
q′,∞

such that

E

[
sup
0≤≤T

∣∣∣Xt −X(n)
t

∣∣∣p] ≤


C

npη∧
pβ
2

if pβ > 1.

C

npη∧
pβ
α

if pβ < α.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2 : Under the assumptions of Theorem 3.1, there exists a constant C

depending on p, d, T,K, ε, λ, ν(B1), ‖b‖L∞
p′ (T )

and ‖%‖L∞T B0
q′,∞

such that

E

[
sup

0≤t≤T

∣∣∣Xt −X(n)
t

∣∣∣p] ≤


C

n
pβ
2

if pβ > 1 ∧ β
2 ≤ η < 1.

C

n
pβ
α

if pβ < α ∧ β
α ≤ η < 1.

The following Theorem is our second main result. It deals with the case where the drift

coefficients is not necessarily Hölder continuous.

Theorem 3.3 : Let 0 < α ≤ 1. Assume that the hypotheses in Assumptions (1.1) - (1.3)

all hold. Assume further that the spacial first partial derivatives of the drift function

b exist and satisfy the assumption (1.2). Suppose in addition that b is bounded and

η-Hölder continuous in the time variable. Then for any p > 0, there exists a positive

constant C depending on λ, d, p, T, |b|L∞
p′ (T )

, |∇b|p′ , |κ|2, ν(B1), ν(Bc
1), ε, and %L∞T B

0
q′,∞

such that for any t ∈ [0, T ],

E

[
sup

0≤t≤T

∣∣∣Xt −X(n)
t

∣∣∣p] ≤


C

n
p
2

if p > 1, α+ β > 1 ∧ η ≥ 1
2 ,

C

n
p
α

if p ≤ α, α+ β > 1 ∧ η ≤ 1
2 .

4. Proof of Main Results

We use the technique introduced by [8] which uses the regularity properties of the

solution to the backward Kolmogorov equation associated with the SDE under consid-

eration to derive the Lp-error of the scheme. More specifically, using Lemma 2.2, for
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any ε ∈ (0, 1), and for any i = 1, 2, ..., d the PDE

∂ui
∂t

+ (Lσν − λ)ui + b.∇ui = −bi on ui(0, x) = 0 (4.1)

has a unique strong solution, and moreover, for some λ large enough, we have

‖ui‖∞ + ‖∇ui‖∞ ≤ ε ≤
1

2
. (4.2)

Applying the Itô formula (see [[15], Lemma 5.1]) to the solution ui of the PDE (4.1) at

Xt, we have

ui(t,Xt) = ui(0, x) +

∫ t

0
(∂s + Ls)ui(s,Xs)ds

+

∫ t

0

∫ ∞
0

∫
Rd

[
ui

(
s,Xs− + 1[0, σ(s,Xs− ,z)](r)z

)
− ui(s,Xs−)

]
Ñ (dz × dr × ds)

= ui(0, x) + λ

∫ t

0
ui(s,Xs)ds−

∫ t

0
bi(s,Xs)ds

+

∫ t

0

∫ ∞
0

∫
Rd
H(s,Xs− , z)Ñ (dz × dr × ds),

where

H(s, x, r, z) := ui
(
s, x+ 1[0, σ(s,x,z)](r)z

)
− ui(s, x)

:= 1[0, σ(s,x,z)](r) (ui (s, x+ z)− ui(s, x)) . (4.3)

Thus∫ t

0
bi(s,Xs)ds = ui(0, x)− ui(t,Xt) + λ

∫ t

0
ui(s,Xs)ds

+

∫ t

0

∫ ∞
0

∫
Rd
H(s,Xs− , r, z)Ñ (dz × dr × ds). (4.4)

Similarly, applying the Itô formula to ui at X
(n)
t we have∫ t

0
bi

(
s,X(n)

s

)
ds =

∫ t

0
λui(s,X

(n)
s )ds

+

∫ t

0

〈
∇ui(s,X(n)

s− ),
(
b(ηn(s), X

(n)
ηn(s)

)− b(s,X(n)
s )

)〉
ds

+

∫ t

0

∫ ∞
0

∫
Rd
H(s,X

(n)
s− , r, z)Ñ (dz × dr × ds). (4.5)
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Using the definitions (1.1), (2.11), (4.4) and (4.5), for each i = 1, 2, · · · , d, we have∣∣∣X(i)
t −X

(n,i)
t

∣∣∣
≤
∣∣∣ui(t,X(n)

t )− ui(t,Xt)
∣∣∣+

∣∣∣∣∫ t

0
λ(ui(s,Xs)− ui(s,X(n)

s ))ds

∣∣∣∣
+

∣∣∣∣∫ t

0

(
bi(ηn(s), X

(n)
ηn(s)

)− bi(s,X(n)
s )

)
ds

∣∣∣∣
+

∣∣∣∣∫ t

0

〈
∇ui(s,X(n)

s− ),
(
b(ηn(s), X

(n)
ηn(s)

)− b(s,X(n)
s )

)〉
ds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫ ∞
0

∫
Rd
K(s,Xs− , X

(n)
s− , r, z)Ñ (dz × dr × ds)

∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|≤1

(
1[0, σ(s,Xs− ,z)](r)− 1

[0, σ(s,X
(n)

η(s)−
,z)]

(r)

)
zÑ (dz, dr, ds)

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|>1

(
1[0, σ(s,Xs− ,z)](r)− 1

[0, σ(s,X
(n)

η(s)−
,z)]

(r)

)
zÑ (dz, dr, ds)

∣∣∣∣∣ (4.6)

where

Ki(s,Xs− , X
(n)
s− , r, z) := (Hi(s,Xs− , r, z)−Hi(s,X

(n)
s− , r, z)).

4.1 Proof of Theorem 3.1 : We first consider the case where the jump intensity

kernel σ is space-independent. In this case the last two terms in (4.6) vanish. We

need to control each of the terms on the right of the inequality (4.6). Since b is Hölder

continuous in both variables, i.e. for all s, t ∈ [0, T ] and all x, y ∈ Rd,

|b(t, x)− b(s, y)| ≤ K(|s− t|η + |x− y|β),

we use the mean value Theorem (MVT) and Lemma 2.2 to reach the inequality:

∣∣∣X(i)
t −X

(n,i)
t

∣∣∣ ≤ ε
∣∣∣X(n)

t −Xt

∣∣∣+ λε

∫ t

0

∣∣∣Xs −X(n)
s

∣∣∣ ds
+(1 + ε)K

∫ t

0

∣∣∣X(n)
ηn(s)

−X(n)
s

∣∣∣β ds+ (1 + ε)K(t− Tj−1)|s− ηn(s)|η

+

∣∣∣∣∫ t

0

∫ ∞
0

∫
Rd
Ki(s,Xs− , X

(n)
s− , r, z)Ñ (dz × dr × ds)

∣∣∣∣ . (4.7)

Next, we form the Lp-norm of the error
∣∣∣Xt −X(n)

t

∣∣∣ . To this end, we use Jensen and
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Hölder’s inequalities:

∣∣∣Xt −X(n)
t

∣∣∣p =

(
d∑
i=1

∣∣∣Xi
t −X

(n,i)
t

∣∣∣2)
p
2

= d
p
2
−15p−1

d∑
i=1

∣∣∣Xi
t −X

(n,i)
t

∣∣∣p
≤ d

p
2
−16p−1εp

∣∣∣X(n)
t −Xt

∣∣∣p + (λε)pT p−1
∫ t

Tj−1

∣∣∣Xs −X(n)
s

∣∣∣p ds
+d

p
2
−16p−1(1 + ε)pKpT p−1

∫ t

Tj−1

∣∣∣X(n)
ηn(s)

−X(n)
s

∣∣∣pβ ds
+d

p
2
−16p−1(1 + ε)pKpT p|s− ηn(s)|pη

+d
p
2
−16p−1

∣∣∣∣∫ t

0

∫ ∞
0

∫
Rd
Ki(s,Xs− , X

(n)
s− , r, z)Ñ (dz × dr × ds)

∣∣∣∣p .
Since ε is arbitrary it can be chosen so that cp := d

p
2 6p−1εp < 1. Now taking supremum

and then expectation on both sides of the above inequality, we have

E
[

sup
0≤u≤t

∣∣∣Xt −X(n)
t

∣∣∣p]
≤ d

p
2
−16p−1(λε)pT p−1

(1− cp)

∫ t

0
E
[

sup
0≤u≤s

∣∣∣Xs −X(n)
s

∣∣∣p] ds
+
d
p
2
−16p−1(1 + ε)pKpT p−1

(1− cp)

∫ t

0
E
[

sup
0≤u≤s

∣∣∣X(n)
ηn(s)

−X(n)
s

∣∣∣pβ] ds
+
d
p
2
−16p−1(1 + ε)pKpT p

(1− cp)
|s− ηn(s)|pη

+
d
p
2
−16p−1

(1− cp)
E
[

sup
0≤u≤t

∣∣∣∣∫ t

0

∫ ∞
0

∫
Rd
Ki(s,Xs− , X

(n)
s− , r, z)Ñ (dz × dr × ds)

∣∣∣∣p] .
= T 2 + T 3 + T 4 + T 5. (4.8)

To find estimates for the stochastic integral T 5, we use Doob’s maximal inequality. Note

that, in the constant coefficient case,

K(s, ., r, z) := H(s, x, r, z)−H(s, y, r, z) = 1[0, σ0(s,z)](r) (Tzui(s, x)− Tzui(s, y)) . (4.9)

where, for any function f on Rd, the operator Tz is defined by

Tzf(s, x) = f(x+ z)− f(x) ∀ z ∈ Rd.

Let us set

dA(s) :=

∫
|z|≤1

(
M|∇Tzu| (s,Xs) +M|Tzu| (s,X(n)

s )
)2
ν(dz).
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Then using [[15], Lemma 5.2] and Minkowski inequality, there exists c2 > 0 such that

E [A(s)] = E

[∫
|z|≤1

∫ t

0

(
M|∇Tzu| (s,Xs) +M|Tzu| (s,X(n)

s )
)2
dsν(dz)

]

≤ c2

∫
|z|≤1

‖∇Tzu‖2L∞
p′ (T )

ν(dz) ≤ C3‖u‖L∞T Bα+βp′,∞
≤ ε. (4.10)

(see [15], page 36.) In the last inequality we have used Lemma 2.2. Thus applying

Doob’s maximal inequality, the hypothesis (Hσ
1 ), and using (4.10), we have

E

[
sup

0≤t≤T
|T 5|p

]
= CpE

(∫ t

0

∫ ∞
0

∫
|z|≤1

|K(s,Xs− , X
(n)
s− , r, z)|

2Ñ (dz, dr, dt)

) p
2


≤ CpE

(∫ t

0

∫
|z|≤1

|σ(s, z)||Tzu(s,Xs−)− Tzu(s,X
(n)
s− )|2ν(dz)ds

) p
2

≤ CpE

(κ2 ∫ t

Tj−1

∫
|z|≤1

|Tzu(s,Xs−)− Tzu(s,X
(n)
s− )|2ν(dz)ds

) p
2


≤ CpE

[(∫ t

0
κ2ε

2
∣∣∣Xs −X(n)

s

∣∣∣2 dAs) p
2

]

≤ Cp (E [As])
p
2

(
E
[∫ t

0
κ2ε

2
∣∣∣Xs −X(n)

s

∣∣∣2 ds]) p
2

≤ Cp,T,κ2,ε,bpp′

∫ t

0
E
[

sup
0≤u≤s

∣∣∣Xu −X(n)
u

∣∣∣2] ds (4.11)

Substituting (4.11) back into (4.8) and then using Lemma 2.5, we get

E
[

sup
0≤u≤t

∣∣∣Xt −X(n)
t

∣∣∣p] ≤ d
p
2
−16p−1(λε)p

(1− cp)

∫ t

0
E
[

sup
0≤u≤s

∣∣∣Xu −X(n)
u

∣∣∣p] ds
+
d
p
2
−16p−1(1 + ε)pKp

(1− cp)

∫ t

0
E
[

sup
0≤u≤s

∣∣∣X(n)
ηn(s)

−X(n)
s

∣∣∣pβ] ds
+
d
p
2
−16p−1(1 + ε)p(KT )p

(1− Cp)
1

npη

+Cp,T,κ2,‖b‖p

∫ t

0
E
[

sup
0≤u≤s

∣∣∣Xu −X(n)
u

∣∣∣p] ds
≤ C2E

[
sup

0≤u≤s

∣∣∣Xu −X(n)
u

∣∣∣p] ds
+
C3

npη
+


C3

n
pβ
2

if pβ > 1

C3

n
pβ
α

if pβ < α ∈ (0, 1).
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Finally, using mathematical induction on j = 1, 2, ...,m and Gronwall’s Lemma, one

verifies that

E
[

sup
0≤u≤t

∣∣∣Xu −X(n)
u

∣∣∣p] ≤


Aj

n
pβ
2

if pβ > 1

Aj

n
pβ
α

if pβ < α ∈ (0, 1).

where in each case A1 = C2e
C1T and Aj := (C0Aj−1 + C2)e

C1T for all j = 2, 3, ...,m.

Thus

E
[

sup
0≤u≤T

∣∣∣Xu −X(n)
u

∣∣∣p] ≤ m∑
j=1

[
sup

Tj−1≤u≤Tj

∣∣∣Xu −X(n)
u

∣∣∣p]

≤

 m∑
j=1

Aj


1

n
pβ
2

if pβ > 1

1

n
pβ
α

if pβ < α ∈ (0, 1).

The proof for the case where σ is space-dependent is similar, we omit. The proof is

complete. 2

4.2 Proof of Theorem 3.3 : As in Theorem 3.1, we prove the Theorem for the case

where the function σ is independent of the space variable, i.e. σ = σ0(t, z). The proof

of the case where σ is space-dependent is similar. Let us introduce two new variables

Yt and Tt(X(n)
t ) defined by

Yt := Tt(Xt) = Xt + u(t,Xt), and Tt(X(n)
t ) = X

(n)
t + u(t,X

(n)
t ). (4.12)

Substituting back into (4.6) and taking absolute value on both sides we have∣∣∣Y (i)
t − T (X

(n)
t )i

∣∣∣
≤
∫ t

Tj−1

∣∣∣b̃(s, Ys)− b̃(s, T (X(n)
s )

∣∣∣ ds+

∫ t

0

∣∣∣bi(ηn(s), X
(n)
ηn(s)

)− bi(s,X(n)
s )

∣∣∣ ds
+

∫ t

0

∣∣∣∇ui(s,X(n)
s− )

∣∣∣ ∣∣∣b(ηn(s), X
(n)
ηn(s)

)− b(s,X(n)
s )

∣∣∣ ds
+

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|≤1

K(s, T −1(Ys−), T −1(T (X
(n)
s− )), r, z)Ñ (dz × dr × ds)

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|>1

K(s, T −1(Ys−), T −1(T (X
(n)
s− ), r, z)N (dz × dr × ds)

∣∣∣∣∣ . (4.13)

We proceed to find a bound for each of the terms on the right side of (4.13). For the

second term, we use Lemma 2.4 :∫ t

0

∣∣∣b̃(s, Ys)− b̃(s, T (X(n)
s )

∣∣∣ ds ≤ 2ε(λ+ κ2ν(Bc
1))

∫ t

0

∣∣∣Ys − T (X(n)
s )

∣∣∣ ds. (4.14)
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The third and fourth terms are more challenging since, unlike in the case of Theorem 3.1,

the coefficient b is not required to be Hölder continuous in x. To overcome this difficulty,

we use an approximating sequence. Following [2], [15], consider ρ ∈ C∞0 (Rd) such that∫
Rd dx = 1. For m ∈ N, define ρm(t, x) := mdρ(t,mx) and

bm(t, x) =

∫
Rd
b(s, x)ρm(t− s, x− y)dy

Then

bm ∈ H1,1(Rd) ∩ C1(Rd), bm −→ b , ‖bm‖p′ and ‖∇bm‖p′ ≤ ‖∇b‖p′ .

Using the Hardy-Littlewood function of the function of bm, we have

|bm(t, x)− bm(t, y))| ≤ Cd |x− y| (M|∇bm|(x) +M|∇bm|(y)) ≤ Cd,p′ ‖∇bm‖p′ |x− y|

for some constant Cd,p′ > 0 (see [15]). Now since b is, by assumption, η-Hölder contin-

uous in t, so is bm. We have

T3 :=

∫ t

0

∣∣∣b(s,X(n)
s )− b(η(s), X

(n)
η(s))

∣∣∣ ds
≤

∫ t

0

∣∣∣b(s,X(n)
s )− bm(s,X(n)

s )
∣∣∣ ds+

∫ t

Tj−1

∣∣∣bm(s,X(n)
s )− bm(s,X

(n)
η(s))

∣∣∣ ds
+

∫ t

0

∣∣∣bm(s,X
(n)
ηn(s)

)− bm(η(s), X
(n)
ηn(s)

)
∣∣∣ ds

+

∫ t

0

∣∣∣bm(ηn(s), X
(n)
ηn(s)

)− b(ηn(s), X
(n)
ηn(s)

)
∣∣∣ ds

≤ KT

(
T

n

)η
+ Cd,pK ‖∇bm‖p′

∫ t

0

∣∣∣X(n)
s −X(n)

η(s)

∣∣∣ ds+ C ‖bm − b‖p′

≤ KT

(
T

n

)η
+ Cd,pK ‖∇b‖p′

∫ t

0

∣∣∣X(n)
s −X(n)

η(s)

∣∣∣ ds, (4.15)

where we applied Hölder’s inequality and took the limit as m −→ ∞ in the last two

inequalities. Next, we substitute the inequalities (4.14) and (4.15), back into the in-

equality (4.13) and then use Jensen and Hölder’s inequalities to form the Lp-norm of
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the error. We have

∣∣∣Yt − T (X
(n)
t )

∣∣∣p
=

(
d∑
i=1

∣∣∣Y i
t − Tt(X

(n)
t )i

∣∣∣2)
p
2

= d
p
2
−15p−1

d∑
i=1

∣∣∣Y i
t − Tt(X

(n)
t )i

∣∣∣p
≤ d

p
2 5p−1(εKλ,σ,ν)pT p−1

∫ t

Tj−1

∣∣∣Ys − T (X(n)
s )

∣∣∣p ds
+ d

p
2
−15p−1(1 + ε)pKpT p

(
T

n

)pη
+ d

p
2 5p−1(1 + ε)pKpT p−1Cd,p ‖∇b‖pp′

∫ t

0

∣∣∣X(n)
s −X(n)

η(s)

∣∣∣p ds
+ d

p
2
−15p−1

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|≤1

K(s, T −1(Ys−), T −1(T (X
(n
s−))), r, z)Ñ (dz × dr × ds)

∣∣∣∣∣
p

+ d
p
2
−15p−1

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|>1

K(s, T −1(Ys−), T −1(T (X
(n
s−))), r, z)N (dz × dr × ds)

∣∣∣∣∣
p

≤ T 1 + T 2 + T 3 + T 4 + T 5 + T 6. (4.16)

To control the two stochastic integrals, we apply Doob’s maximal inequality to the terms

T 5 and T 6 with K(s, x, y, r, z) defined in (4.9). We have

E

[
sup

0≤t≤T
|T 5|p

]

:= E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

Tj−1

∫ ∞
0

∫
|z|≤1

K(s, T −1(Ys−), T −1(T (X
(n)
s− ), r, z)Ñ (dz, dr, dt)

∣∣∣∣∣
p]

≤ CpE

(∫ t

Tj−1

∫
|z|≤1

σ0(s, z)
∣∣∣T −1(Ys−)− T −1(T (X

(n)
s− ))

∣∣∣2 ν(dz)ds)

) p
2


≤ 4CpεE

(∫ t

Tj−1

∫
|z|≤1

σ0(s, z)
∣∣∣Ys− − T (X

(n)
s− )

∣∣∣2 ν(dz)ds)

) p
2


≤ 4κ2ν(B1))

p
2T

p
2
−1E

[∫ t

0
κ2

∣∣∣Ys− − T (X
(n)
s− )

∣∣∣p ds] , (4.17)
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Similarly, one obtains

E

[
sup

0≤t≤T
|T 6|p

]

:= E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∫ ∞
0

∫
|z|>1

K(s, T −1(Ys−), T −1(T (X
(n)
s− )), r, z)N (dz, dr, dt)

∣∣∣∣∣
p]

≤ Cp,T,σ0,ν,εE
[∫ t

0

∣∣∣Ys− − T (X
(n)
s− )

∣∣∣p ds] . (4.18)

Thus, taking supremum and then expectation on both sides of the inequality (4.16) and

using the inequalities (4.17) and (4.18), we have

E

[
sup

Tj−1≤u≤t

∣∣∣Yu − T (X(n)
u )

∣∣∣p]

≤ d
p
2 5p−1(εKλ,σ,ν)pT p−1

∫ t

0
E

[
sup

Tj−1≤u≤s

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ds
+ d

p
2
−15p−1KpT p

(
T

n

)pη
+ d

p
2
−15p−1T p−1Cd,pK

p ‖b‖pr
∫ t

0
E
[

sup
0≤u≤s

∣∣∣X(n)
u −X(n)

η(u)

∣∣∣p] ds
+ d

p
2
−15p−1Cp,T,σ0,ν,ε

∫ t

0
E

[
sup

Tj−1≤u≤s

∣∣∣Yu− − T (X
(n)
u− )

∣∣∣p ds] (4.19)

Lastly, using Lemma 2.4, we have

E
[

sup
0≤u≤t

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ≤ C2

∫ t

0
E
[

sup
0≤u≤s

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ds+ C3
1

npη

+


C2

n
p
2

if p > 1

C2

n
p
α

if p < α ∈ (0, 1)

≤ C1

∫ t

0
E

[
sup

Tj−1≤u≤s

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ds
+


C2

n
p
2 ∧pη

if p > 1

C2

n
p
α∧pη

if p < α ∈ (0, 1).

Finally, using mathematical induction on j = 1, 2, ...,m and Gronwall’s Lemma, one

verifies that

E

[
sup

Tj−1≤u≤t

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ≤


Aj

n
p
2 ∧pη

if p > 1

Aj

n
p
α ∧pη

if p < α ∈ (0, 1).
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where in each case A1 = C2e
C1T and Aj := (C0Aj−1 + C2)e

C1T for all j = 2, 3, ...,m,

completes the proof. Thus

E
[

sup
0≤u≤T

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ≤ m∑
j=1

[
sup

Tj−1≤u≤Tj

∣∣∣Yu − T (X(n)
u )

∣∣∣p]

≤

 m∑
j=1

Aj


1

n
p
2 ∧pη

if p > 1

1

n
p
α ∧pη

if p < α ∈ (0, 1).

We poved that

E
[

sup
0≤u≤T

∣∣∣Yu − T (X(n)
u )

∣∣∣p] ≤


C

n
p
2 ∧pη

if p > 1

C

n
p
α∧pη

if p < α ∈ (0, 1).

The result follows from definitions (4.12) and Lemma 2.6.

Remark 4.1 : We note that in the case where the function σ is space-dependent, the

constant C in the inequalities corresponding to the last three terms in (4.6) involve

‖%‖p
L∞T B

0
q,∞
. To see this, apply the Doob’s inequality to the sixth term in (4.6) (for ex-

ample), and use the hypothesis (Hσ
2 ), [[15], Lemma 5.2] and Minkowski inequality and

Hölder’s inequality.
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