International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 14 No. I (June, 2020), pp. 43-54

ON SOME NEW STRONGER FORMS OF FUZZY $g^{* *}$ CONTINUOUS FUNCTIONS IN FUZZY TOPOLOGICAL SPACES

MRITYUNJAY K. GAVIMATH ${ }^{1}$ AND SADANAND N. PATIL ${ }^{2}$
${ }^{1}$ Assistant Prof., Department of Mathematics,
S R Kanthi Arts, Commerce and Science College, Mudhol, Karnataka, India
${ }^{2}$ Professor \& Head, Department of Mathematics, Jain Institute of Technology, Davangere, Karnataka, India

Abstract

The aim of this paper is to introduce and study some stronger forms of fuzzy $g^{* *}$ continuous functions namely, strongly fuzzy $g^{* *}$-continuous, perfectly fuzzy $g^{* *}$ continuous and completely fuzzy $g^{* *}$-continuous functions and their properties.

1. Introduction

Prof. L. A. Zadeh's [23] in 1965 introduced of the concept of 'fuzzy subset', in the year 1968, C L. Chang [6] introduced the structure of fuzzy topology as an application of fuzzy sets to general topology. Subsequently many researchers like, C. K. Wong [22], R. H. Warren [21], R. Lowen[10], A. S. Mashhour [12], K. K. Azad [2], M. N. Mukherjee [13,14], G. Balasubramanian and P. Sundaram [3] and many others have contributed to the development of fuzzy topological spaces.

Key Words : Strongly $f g^{* *}$-continuous, perfectly $f g^{* *}$-continuous, completely $f g^{* *}$-continuous. (c) http: //www.ascent-journals.com

The image and the inverse image of fuzzy subsets under Zadeh's functions and their properties proved by C. L. Chang [6] and R. H.Warren [21] are included. Fuzzy topological spaces and some basic concepts and results on fuzzy topological spaces from the works of C. L. Chang [6] , R. H. Warren [20], and C. K. Wong [22] are presented. And some basic preliminaries are included. N. Levine [9] introduced generalized closed sets (g-closed sets) in general topology as a generalization of closed sets. Many researchers have worked on this and related problems both in general and fuzzy topology.
Dr. Sadanand Patil [15,16 and 17], S. P. Arya and R. Gupta [1], R. N. Bhaounik and Anjan Mukharjee [3], M. N. Mukharjee and B. Ghosh [13] and so many researchers have introduced and studied some stronger forms of fuzzy continuous functions like, Strongly, Perfectly and Completely fuzzy continuous functions and their mappings.

2. Preliminaries

Throughout this paper $(X, T),(Y, \sigma)$ and (Z, η) or (simply X, Y and $Z)$ represents non-empty fuzzy topological spaces on which no separation axiom is assumed unless explicitly stated. For a subset A of a space $(X, T) . \operatorname{cl}(A), \operatorname{int}(A)$ and $C(A)$ denotes the closure, interior and the compliment of A respectively.
Definition 2.01: A fuzzy set A of a fts (X, T) is called:
(1) A semi-open fuzzy set, if $A \leq \operatorname{cl}(\operatorname{int}(A))$ and a semi-closed fuzzy set, if $\operatorname{int}(c l(A)) \leq$ 0 [15]
(2) A pre-open fuzzy set, if $A \leq \operatorname{int}(c l(A)) f$ and a pre-closed fuzzy set, if $c l(\operatorname{int}(A)) \leq A$ [15]
(3) A α-open fuzzy set, if $A \leq \operatorname{int}(c l(\operatorname{int}(A)))$ and α a -closed fuzzy set, if $c l(\operatorname{int}(c l(A))) \leq$ A [16].

The semi closure (respectively pre-closure, α-closure) of a fuzzy set A in a fts (X, T) is the intersection of all semi closed (respectively pre closed fuzzy set, α-closed fuzzy set) fuzzy sets containing A and is denoted by $\operatorname{scl}(A)$ (respectively $\operatorname{pcl}(A), \operatorname{\alpha cl}(A))$.
Definition 2.02: A fuzzy set A of a fts (X, T) is called:
(1) A generalized closed (g-closed) fuzzy set, if $c l(A) \leq U$, whenever $A \leq U$ and U is open fuzzy set in (X, T). [3]
(2) A generalized pre-closed ($g p$-closed) fuzzy set, if $p c l(A) \leq U$, whenever $A \leq U$ and U is open fuzzy set in (X, T). [15]
(3) A α-generalized closed (αg-closed) fuzzy set, if $\alpha c l(A) \leq U$, whenever $A \leq U$ and U is open fuzzy set in (X, T). [15, 16 and 17]
(4) A generalized α-closed ($g \alpha$-closed) fuzzy set, if $\alpha c l(A) \leq U$, whenever $A \leq U$ and U is open fuzzy set in (X, T). [15,16 and 17$]$
(5) A generalized semi pre closed $(g s p$-closed) fuzzy set, if $\operatorname{spcl}(A) \leq U$, whenever $A \leq U$ and U is open fuzzy set in $(X, T) .[15,16$ and 17]
(6) A g^{*}-closed fuzzy set, if $\operatorname{cl}(A) \leq U$, whenever $A \leq U$ and U is g-open fuzzy set in $(X, T) .[9]$
(7) A $g^{\#}$-closed fuzzy set, if $\operatorname{cl}(A) \leq U$, whenever $A \in U$ and U is αg-open fuzzy set in $(X, T) .[15,16]$
(8) A $g^{\# \#}$-closed fuzzy set, if $\alpha c l(A) \leq U$, whenever $A \leq U$ and U is αg-open fuzzy set in $(X, T) .[19]$
(9) A $g^{* *}$-closed fuzzy set, if $\operatorname{cl}(A) \leq U$, whenever $A \leq U$ and U is g^{*}-open fuzzy set in (X, T). []

Complement of g-closed fuzzy (respectively $g p$-closed fuzzy set, αg-closed fuzzy set, $g \alpha$ closed fuzzy set, $g s p$-closed fuzzy set, g^{*}-closed fuzzy set and $g^{\#}$-closed fuzzy set) sets are called g-open (respectively $g p$-open fuzzy set, αg-open fuzzy set, $g \alpha$-open fuzzy set,
 set) sets.
Definition 2.03 : Let X and Y be two fuzzy topological Spaces, A function $f: X \rightarrow Y$ is called:
(1) A fuzzy continuous (f-continuous) if $f^{-1}(A)$ is closed fuzzy set in X, for every closed fuzzy set A of Y. [3]
(2) A fuzzy α-continuous ($f \alpha$-continuous) if $f^{-1}(A)$ is α-closed fuzzy set in X, for every closed fuzzy set A of Y. [15]
(3) A fuzzy generalized-continuous ($f g$-continuous) if $f^{-1}(A)$ is g-closed fuzzy set in X, for every closed fuzzy set A of Y. [15]
(4) A fuzzy generalized α-continuous ($f g \alpha$-continuous) if $f^{-1}(A)$ is $g \alpha$-closed fuzzy set in X, for every closed fuzzy set A of Y. [3]
(5) A fuzzy α-generalized continuous ($f \alpha g$-continuous) if $f^{-1}(A)$ is αg-closed fuzzy set in X, for every closed fuzzy set A of Y. [15]
(6) A fuzzy g^{*}-continuous ($f g^{*}$-continuous) if $f^{-1}(A)$ is g^{*}-closed fuzzy set in X, for every closed fuzzy set A of Y. [15]
(7) A fuzzy $g^{\#}$-continuous ($f g^{\#}$-continuous) if $f^{-1}(A)$ is $g^{\#}$-closed fuzzy set in X, for every closed fuzzy set A of Y. [16]
(8) A fuzzy $g^{\# \#}$-continuous ($f g^{\# \#}$-continuous) if $f^{-1}(A)$ is $g^{\# \#}$-closed fuzzy set in X, for every closed fuzzy set A of Y. [19]
(9) A fuzzy $g^{* *}$-continuous ($f g^{* *}$-continuous) if $f^{-1}(A)$ is $g^{* *}$-closed fuzzy set in X, for every closed fuzzy set A of Y. [19]
(10) Some New Fuzzy $g^{* *}$-open Sets, Fuzzy $g^{* *}$-Irresolute and Fuzzy $g^{* *}$-Homeomorphism Mappings in Fuzzy Topological Spaces, International Journal of Science, Engineering and Management, ISSN: 2456-1304, Volume 01, Isue 05, Sept 2016(28-36). [20].
(11) A fuzzy $g^{\# \#}$-irresolute $\left(f g^{\# \#}\right.$-irresolute) if $f^{-1}(A)$ is $g^{\# \#}$-closed fuzzy set in X, for every closed fuzzy set A of Y. [19]
(12) A fuzzy $g^{* *}$-irresolute $\left(f g^{* *}\right.$-irresolute) if $f^{-1}(A)$ is $g^{* *}$-closed fuzzy set in X, for every closed fuzzy set A of Y. []
(13) A fuzzy strongly continuous (strongly f-continuous) if $f^{-1}(V)$ is closed fuzzy set in X, for every closed set in Y. [1]
(14) A fuzzy strongly g-continuous (strongly $f g$-continuous) if $f^{-1}(V)$ is open fuzzy set in X, for every g-open set in Y. [13]

Definition 2.04: A map $f: X \rightarrow Y$ is called:

ON SOME NEW STRONGER FORMS OF FUZZY $g^{* *}$ CONTINUOUS...
(1) fuzzy-open (f-open) iff $f(V)$ is open-fuzzy set in Y for every open fuzzy set in X [15]
(2) fuzzy g-open ($f g$-open) iff $f(V)$ is g-open-fuzzy set in Y for every open fuzzy set in X [15]
(3) fuzzy g^{*}-open $\left(f g^{*}\right.$-open) iff $f(V)$ is g^{*}-open-fuzzy set in Y for every open fuzzy set in X [16]
(4) fuzzy $g^{* *}$-open $\left(f g^{* *}\right.$-open $)$ iff $f(V)$ is $g^{* *}$-open-fuzzy set in Y for every open fuzzy set in X []
(5) fuzzy $g^{\#}$-open $\left(f g^{\#}\right.$-open $)$ iff $f(V)$ is $g^{\#}$-open-fuzzy set in Y for every open fuzzy set in X [16]
(6) fuzzy $g^{\# \#}$-open $\left(f g^{\# \#}\right.$-open) iff $f(V)$ is $g^{\# \#}$-open-fuzzy set in Y for every open fuzzy set in X [19]

3. Strongly $g^{* *}$-Continuous Function in Fuzzy Topologifal Spaces

Definition 3.01: A function $f: X \rightarrow Y$ is said to be strongly fuzzy $g^{* *}$-continuous (briefly strongly $f g^{* *}$-continuous) iff the inverse image of every $g^{* *}$-open fuzzy set in Y is open fuzzy set in X. Now we introduce the following.
Theorem 3.02: A function $f: X \rightarrow Y$ is strongly $f g^{* *}$-continuous iff the inverse image of every $g^{* *}$-closed fuzzy set in Y is closed fuzzy set in X.
Proof: The proof follows from the definition.
Theorem 3.03: Every strongly $f g^{* *}$-continuous function is a f-continuous function.
Proof: Let $f: X \rightarrow Y$ be strongly $f g^{* *}$-continuous function. Let V be open fuzzy set in Y, and V is $g^{* *}$-open set in Y. Then $f^{-1}(V)$ is open fuzzy set in X. Hence f is f-continuous function. The converse of the above theorem need not be true as seen from the following example.
Example 3.04: Let $X=Y=\{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows. $A=\{(a, 0.7),(b, 0.5),(c, 0.8)\}, B=\{(a, 0.3),(b, 0.5),(c, 0.2)\}, C=$ $\{(a, 0.8),(b, 0.5),(c, 0.9)\}$. Consider $T=\{0,1, A, B\}$ and $\sigma=\{0,1, B\}$ then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$. Then f is f-continuous as B is open fuzzy set in Y and $f^{-1}(B)=B$ is open fuzzy set in X. But
f is not strongly $f g^{* *}$-continuous as the fuzzy set C is $g^{* *}$-closed fuzzy set in Y and $f^{-1}(C)=C$ is not closed fuzzy set in X.

Theorem 3.05 : Every f-strongly continuous function is a strongly $f g^{* *}$-continuous function.

Proof : Let $f: X \rightarrow Y$ be f-strongly continuous function. Let V be $g^{* *}$-open fuzzy set in Y. And then $f^{-1}(V)$ is both open and closed fuzzy set in X as f is f-strongly continuous function. Hence f is strongly $f g^{* *}$-continuous function.
The converse of the above theorem need not be true as seen from the following example.
Example 3.06 : Let $X=Y=\{a, b, c\}$ and the fuzzy sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{6} be defined as follows. $A_{1}=\{(a, 1),(b, 0),(c, 0)\}, A_{2}=\{(a, 0),(b, 1),(c, 0)\}, A_{3}=$ $\{(a, 0),(b, 0),(c, 1)\}, A_{4}=\{(a, 1),(b, 1),(c, 0)\}, A_{5}=\{(a, 1),(b, 0),(c, 1)\}$ and $A_{6}=$ $\{(a, 0),(b, 1),(c, 1)\}$. Consider $T=\left\{0,1, A_{1}, A_{2}, A_{4}\right\}$ and $\sigma=\left\{0,1, A_{4}\right\}$. Then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=b, f(b)=a$ and $f(c)=c$. Then f is strongly $f g^{* *}$-continuous but not f-strongly continuous as A_{1} in Y is such that $f^{-1}\left(A_{1}\right)=A_{2}$ is open fuzzy set in X not closed fuzzy set in X.
Theorem 3.07: Let $f: X \rightarrow Y$ be strongly $f g^{* *}$-continuous and $g: Y \rightarrow Z$ is strongly $f g^{* *}$-continuous. Then the composition map $g o f: X \rightarrow Z$ is strongly $f g^{* *}$-continuous function.
Proof : Let V be $g^{* *}$-open fuzzy set in Z. Then $g^{-1}(V)$ is open fuzzy set in Y, since g is strongly $f g^{* *}$-continuous. Therefore $g^{-1}(V)$ is $g^{* *}$-open fuzzy set in Y. Also since f is strongly $f g^{* *}$-continuous, $f^{-1}\left(g^{-1}(V)=(g \circ f)^{-1}(V)\right.$ is open fuzzy set in X. Hence gof is strongly $f g^{* *}$-continuous function.
Theorem 3.08: Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps such that f is strongly $f g^{* *}$ continuous and g is $f g^{* *}$-continuous then $g o f: X \rightarrow Z$ is f -continuous.
Proof : Let F be a closed fuzzy set in Z. Then $g^{-1}(F)$ is $g^{* *}$-closed fuzzy set in Y. Since g is $f g^{* *}$-continuous. And since f is strongly $f g^{* *}$-continuous, $f^{-1}\left(g^{-1}(F)=\right.$ $(g \circ f)^{-1}(F)$ is closed fuzzy set in X. Hence $g o f$ is f-continuous.
Theorem 3.09 : If $f: X \rightarrow Y$ be strongly $f g^{* *}$-continuous and $g: Y \rightarrow Z$ is $f g^{* *}{ }_{-}$ irresolute, then the composition map $g o f: X \rightarrow Z$ is strongly $f g^{* *}$-continuous.
Proof: Omitted.

4. Perfectly $g^{* *}$-Continuous Function in Fuzzy Topological Spaces

Definition 4.01: A function $f: X \rightarrow Y$ called perfectly fuzzy $g^{* *}$-continuous (briefly perfectly $f g^{* *}$-continuous) if the inverse image of every $g^{* *}$-open fuzzy set in Y is both open and closed fuzzy set in X.
Theorem 4.02: A map $f: X \rightarrow Y$ is perfectly $f g^{* *}$-continuous iff the inverse image of every $g^{* *}$-closed fuzzy set in Y is both open and closed fuzzy set in X.

Proof: The proof follows from the definition.
Theorem 4.03: Every perfectly $f g^{* *}$-continuous function is f-continuous function.
Proof: Let $f: X \rightarrow Y$ be perfectly $f g^{* *}$-continuous. Let V be open fuzzy set in Y, and V is $g^{* *}$-open fuzzy set in Y. Since f is perfectly $f g^{* *}$-continuous, then $f^{-1}(V)$ is both open and closed fuzzy set in X. That is $f^{-1}(V)$ is open fuzzy set in X. Hence f is f-continuous function.
The converse of the above theorem need not be true as seen from the following example.
Example 4.04: Let $X=Y=\{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows. $A=\{(a, 0.7),(b, 0.5),(c, 0.8)\}, B=\{(a, 0.3),(b, 0.5),(c, 0.2)\}, C=$ $\{(a, 0.8),(b, 0.5),(c, 0.9)\}$. Consider $T=\{0,1, A, B\}$ and $\sigma=\{0,1, B\}$. Then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$. Then f is f-continuous but not perfectly $f g^{* *}$-continuous as the fuzzy set $1-C=$ $\{(a, 0.2),(b, 0.5),(c, 0.1)\}$ is $g^{* *}$-open fuzzy set in Y and $f^{-1}(1-C)=1-C$ which is not both open and closed fuzzy set in X.
Theorem 4.05: Every perfectly $f g^{* *}$-continuous function is a f-perfectly continuous function.
Proof: let $f: X \rightarrow Y$ be perfectly $f g^{* *}$-continuous. Let V be open fuzzy set in Y, then V be $g^{* *}$-open fuzzy set in Y. Since f is perfectly $f g^{* *}$-continuous. Then $f^{-1}(V)$ is both open and closed fuzzy set in X. And hence f is f-perfectly continuous function. The converse of the above theorem need not be true as seen from the following example. Example 4.06: Example: Let $X=Y=\{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows.
$A=\{(a, 0.7),(b, 0.5),(c, 0.8)\}, B=\{(a, 0.3),(b, 0.5),(c, 0.2)\}, C=\{(a, 0.8),(b, 0.5),(c, 0.9)\}$. Consider $T=\{0,1, A, B\}$ and $\sigma=\{0,1, B\}$. Then $(X, T) \rightarrow$ and (Y, σ) are fts. Define $f: X Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$. Then f is f-perfectly function. As the fuzzy set in B is open fuzzy set in Y, and its inverse image $f^{-1}(B)=B$ is both
open and closed fuzzy set in X. But f is not perfectly $f g^{* *}$-continuous as the fuzzy set $1-C=\{(a, 0.2),(b, 0.5),(c, 0.1)\}$ is $g^{* *}$-open fuzzy set in Y and $f^{-1}(1-C)=1-C$ which is not both open and closed fuzzy set in X.
Theorem 4.07: Every perfectly $f g^{* *}$-continuous function is strongly $f g^{* *}$-continuous function.

Proof: Let $f: X \rightarrow Y$ be perfectly $f g^{* *}$-continuous. Let V be $g^{* *}$-open fuzzy set in Y. Then $f^{-1}(V)$ is both open and closed fuzzy set in X. Therefore $f^{-1}(V)$ is open fuzzy set in X. Hence f is strongly $f g^{* *}$-continuous function.
The converse of the above theorem need not be true as seen from the following example.
Example 4.08: Let $X=Y=\{a, b, c\}$ and the fuzzy sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{6} be defined as follows.
$A_{1}=\{(a, 1),(b, 0),(c, 0)\}, A_{2}=\{(a, 0),(b, 1),(c, 0)\}, A_{3}=\{(a, 0),(b, 0),(c, 1)\}, A_{4}=$ $\{(a, 1),(b, 1),(c, 0)\}, A_{5}=\{(a, 1),(b, 0),(c, 1)\}$ and $A_{6}=\{(a, 0),(b, 1),(c, 1)\}$. Consider $T=\left\{0,1, A_{1}, A_{2}, A_{4}\right\}$ and $\sigma=\left\{0,1, A_{4}\right\}$. Then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=b, f(b)=a$ and $f(c)=c$. Then f is strongly $f g^{* *}$-continuous but not perfectly $f g^{* *}$-continuous as the fuzzy set A_{3} is $g^{* *}$-closed fuzzy set in Y and $f^{-1}\left(A_{3}\right)=A_{3}$ is not both open and closed fuzzy set in X.

Theorem 4.09: Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be two perfectly $f g^{* *}$-continuous function then gof : $X \rightarrow Z$ is perfectly $f g^{* *}$-continuous function.
Proof : Let V be $g^{* *}$-open fuzzy set in Z. Then $g^{-1}(V)$ is both open and closed fuzzy set in Y, since g is perfectly $f g^{* *}$-continuous. Therefore $g^{-1}(V)$ is $g^{* *}$-open fuzzy set in Y. Also since f is perfectly $f g^{* *}$-continuous. $f^{-1}\left(g^{-1}(V)\right)=(g o f)^{-1}(V)$ is both open and closed fuzzy set in X. Hence $g o f$ is perfectly $f g^{* *}$-continuous function.

Theorem 4.10: Let $f: X \rightarrow Y$ be perfectly $f g^{* *}$-continuous and $g: Y \rightarrow Z$ be $g^{* *}$-irresolute function then $g o f: X \rightarrow Z$ is perfectly $f g^{* *}$-continuous function.

Proof: Omitted.

5. Completely $g^{* *}$-Continuous Function in Fuzzy Topological Spaces

Definition 5.01: A map $f: X \rightarrow Y$ is called completely fuzzy $g^{* *}$-continuous (briefly completely $g^{* *}$-continuous) if the inverse image of every $g^{* *}$-open fuzzy set in Y is regular-open fuzzy set in X.

Theorem 5.02: A map $f: X \rightarrow Y$ is completely $f g^{* *}$-continuous. Iff the inverse
image of every $g^{* *}$-closed fuzzy set in Y is regular-closed fuzzy set in X.
Proof : The proof follows from the definition.
Theorem 5.03: Every completely $f g^{* *}$-continuous function is a f-continuous function.
Proof : Let $f: X \rightarrow Y$ be completely $f g^{* *}$-continuous function. Let V be open fuzzy set in Y. Then V is $g^{* *}$-open fuzzy set in Y. And then $f^{-1}(V)$ is both regular-open fuzzy set in X, and therefore $f^{-1}(V)$ is open fuzzy set in X. Hence f is f-continuous function.

The converse of the above theorem need not be true as seen from the following example.
Example 5.04 : Let $X=Y=\{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows.
$A=\{(a, 0.7),(b, 0.5),(c, 0.8)\}, B=\{(a, 0.3),(b, 0.5),(c, 0.2)\}, C=\{(a, 0.8),(b, 0.5),(c, 0.9)\}$.
Consider $T=\{0,1, A, B\}$ and $\sigma=\{0,1, B\}$. Then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$. Then f is f-continuous function but not completely $f g^{* *}$-continuous as the fuzzy set $1-C=\{(a, 0.2),(b, 0.5),(c, 0.1)\}$ is $g^{* *}$-open fuzzy set in Y and $f^{-1}(1-C)=1-C$ which is not regular open fuzzy set in X.

Theorem 5.05 : Every completely $f g^{* *}$-continuous function is a f-completely continuous function.

Proof : Let $f: X \rightarrow Y$ be completely $f g^{* *}$-continuous. Let V be open fuzzy set in Y. Then V be $g^{* *}$-open fuzzy set in Y. Then $f^{-1}(V)$ is regular-open fuzzy set in X. Hence f is f-completely continuous function.

The converse of the above theorem need not be true as seen from the following example.
Example 5.06 : Let $X=Y=\{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows.
$A=\{(a, 0.7),(b, 0.5),(c, 0.8)\}, B=\{(a, 0.3),(b, 0.5),(c, 0.2)\}, C=\{(a, 0.8),(b, 0.5),(c, 0.9)\}$.
Consider $T=\{0,1, A, B\}$ and $\sigma=\{0,1, B\}$. Then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$. Then f is f-completely continuous function as the fuzzy set B is open fuzzy set in Y, and its inverse image $f^{-1}(B)=B$ is regular-open fuzzy set in X. But not completely $f g^{* *}$-continuous as the fuzzy set $1-C=\{(a, 0.2),(b, 0.5),(c, 0.1)\}$ is $g^{* *}$-open fuzzy set in Y and $f^{-1}(1-C)=1-C$ which is not regular open fuzzy set in X.
Theorem 5.07 : Every completely $f g^{* *}$-continuous function is strongly $f g^{* *}$-continuous
function.
Proof: Let $f: X \rightarrow Y$ be completely $f g^{* *}$-continuous. Let V be $g^{* *}$-open fuzzy set in Y. Then $f^{-1}(V)$ is regular-open fuzzy set in X. Therefore $f^{-1}(V)$ is open fuzzy set in X. Hence f is strongly $f g^{* *}$-continuous function.
The converse of the above theorem need not be true as seen from the following example.
Example 5.08: Let $X=Y=\{a, b, c\}$ and the fuzzy sets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{6} be defined as follows.
$A_{1}=\{(a, 1),(b, 0),(c, 0)\}, A_{2}=\{(a, 0),(b, 1),(c, 0)\}, A_{3}=\{(a, 0),(b, 0),(c, 1)\}, A_{4}=$ $\{(a, 1),(b, 1),(c, 0)\}, A_{5}=\{(a, 1),(b, 0),(c, 1)\}$ and $A_{6}=\{(a, 0),(b, 1),(c, 1)\}$. Consider $T=\left\{0,1, A_{1}, A_{2}, A_{4}\right\}$ and $\sigma=\left\{0,1, A_{4}\right\}$. Then (X, T) and (Y, σ) are fts. Define $f: X \rightarrow Y$ by $f(a)=b, f(b)=a$ and $f(c)=c$. Then f is strongly $f g^{* *}$-continuous but not completely $f g^{* *}$-continuous as the fuzzy set A_{3} is $g^{* *}$-closed fuzzy set in Y and its inverse image $f^{-1}\left(A_{3}\right)=A_{3}$ is not regular- closed fuzzy set in X.
Theorem 5.09: If $f: X \rightarrow Y$ is completely $f g^{* *}$-continuous and $g: Y \rightarrow Z$ is $f g^{* *}$-irresolute function then $g o f: X \rightarrow Z$ is completely $f g^{* *}$-continuous function.
Proof : Let V be $g^{* *}$-open fuzzy set in Z. Then $g^{-1}(V)$ is $g^{* *}$-open fuzzy set in Y, since g is $f g^{* *}$-irresolute function. Also since f is completely $f g^{* *}$-continuous. $f^{-1}\left(g^{-1}(V)\right)=$ $(g o f)^{-1}(V)$ is regular-open fuzzy set in X. Hence gof is completely $f g^{* *}$-continuous function.
Theorem 5.10: If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two completely $f g^{* *}$-continuous function then gof : $X \rightarrow Z$ is completely $f g^{* *}$-continuous function.
Proof: Omitted.

References

[1] Arya S. P. and Gupta R., On strongly continuous mappings, Kyungpook Math. JI, 14 (1974), 131-143.
[2] Azad K. K., On fuzzy semi- continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math Anal Appl., 82 (1981), 14-32.
[3] Balasubramanian G. and Sundaram P., On some generalization of fuzzy continuous function, fuzzy sets \& system, 86 (1997), 93-100.
[4] Bhaunik R. N. and Anjan Mukherjee, Fuzzy Completely continuous mapping, Fuzzy sets and system, 56 (1993), 243-246.
[5] Bin Shahna A. S., On fuzzy strong continuity and fuzzy pre continuity, fuzzy sets \& system, 44 (1991), 303-308.
[6] Chang C. L., Fuzzy topological spaces, J. Math Anal Appl., 24 (1968), 182-190.
[7] Devi R. and Muthtamil Selvan M., On fuzzy generalized* extremely disconnectedness, Bulletin of Pure and Applied Science, 23E(No.1) (2004), 19-26.
[8] Fukutake T., Saraf R. K., Caldas M. and Mishra S., Mapping via Fgp-Closed sets. Bull of Fuku. Univ of Edu., 52(PartIII) (2003) 11-20.
[9] Levine N., Strong continuity in topological space, Amer. Math. Monthly, 67 (1960), 269.
[10] Lowen R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621- 633.
[11] Maki H., Devi R. and Balachandran K., Associated topologies of generalized α-closed sets and α-generalized closed set. Mem. Fac. Sci. Kochi Univ. Ser Math., 15 (1994), 51-63.
[12] Mashhour A. S., Hasanein I. A. and EI-Deeb S. N., α-continuous and α-open mappings, Acta Math. Hung. 41(3-4) (1983), 213-218.
[13] Mukharjee M. N. and Ghosh B., Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, fuzzy sets and systems, 38 (1990), 375387.
[14] Mukherjee M. N. and Sinha S. P., Irresolute and almost open function between fuzzy topological spaces, Fuzzy sets and systems, 29 (1989), 381-388.
[15] Patil Sadanand N., On $g^{\#}$ - closed fuzzy set and fuzzy $g^{\#}$-continuous maps in fuzzy topological spaces, proc of the KMA National seminar on Fuzzy Math \& Appl., Kothamangalam (53-79).
[16] Patil Sadanand N., On $g^{\#}$-semi closed fuzzy sets and $g^{\#}$-semi contours maps in Fuzzy topological spaces. IMS conference Roorkey (UP), (26-30) (Dec 2005).
[17] Patil Sadanand N., On some Recent Advances in Topology. Ph.D Theses, Karnataka University, Dharwad (2008).
[18] Potadar Kiran G. and Patil Sadanand N., On Fuzzy $g^{\# \#}$-Continuous maps and fuzzy $g^{\# \#}$-Homomorphism mappings in Fuzzy topological spaces, International Journal of Scince, Enggineering and Management, ISSN: 2456-1304, 01(Isue 05), (Sept 2016) 19-27.
[19] Potadar KiranG. and Patil Sadanand N., New Stronger Forms of Fuzzy Continuous mapping in Fuzzy Topological Spaces, Journal of Adv in Sci. \& Tech, ISSN 2230-9659, Vol 12, (Dec 2016) (34-39).
[20] Mrityunjay K. Gavimath and Patil Sadanand N., Some New Fuzzy $g^{* *}$-open Sets, Fuzzy $g^{* *}$-Irresolute and Fuzzy $g^{* *}$-Homeomorphism Mappings in Fuzzy Topological Spaces, International Journal of Scince, Enggineering and Management, ISSN: 2456-1304, 01(Issue 05), (Sept 2016), 28-36.
[21] Veerakumar M. K. R. S., $g^{\# \text {-semi closed sets in topology Acta ciencia, Indica. }}$ xxix(1) (2002), 081.
[22] Warren R. H., Continuity of Mapping on fuzzy topological spaces, Notices. Amer. Math. Soc., 21 (1974,) A-451.
[23] Wong C. K., Covering properties of fuzzy set, Indiana Univ. Math. JI, 26(2) (1977), 191-197.
[24] Zadeh L. A., Fuzzy sets, Information and control, 8 (1965), 338-353.

