DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK CORRELATION FOR PREDICTION OF PRESSURE DROP OF SLURRY TRANSPORT IN PIPELINES

S. K. LAHIRI AND K. C. GHANTA

Abstract

In the literature, several correlations have been proposed for pressure drop prediction in slurry pipelines. However, these correlations fail to predict pressure drop over a wide range of conditions. Based on a databank of around 220 measurements collected from the open literature, a correlation for pressure drop was derived using a combination of Dimensional Analysis and artificial neural network (ANN) modeling. The pressure drop for slurry was found to be a function of four dimensionless groups: Reynolds number, Froude number, particle diameter/ pipe diameter, and solids volume fraction. Statistical analysis showed that the proposed correlation has an average absolute relative error (AARE) of 12.7% and a standard deviation of 16.4%. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved prediction of pressure drop. The developed correlation also shows better prediction over a wide range of operating conditions, physical properties, and pipe diameters, and it predicts properly the trend of the effect of the operating and design parameters on pressure drop.

Key Words: Force analysis; Artificial neural network; Slurry pressure drop