HYPERIDENTITIES IN (X(Y Z))Z WITH REVERSE ARC GRAPH VARIETIES OF TYPE (2, 0)

AMPORN ANANTPINITWATNA AND TIANG POOMSA-ARD

Abstract

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies a term equation $s \approx t$ if the corresponding graph algebra $\underline{A}(G)$ satisfies $s \approx t$. A class of graph algebras V is called a graph variety if $V = \overline{Mod_g}\Sigma$ where Σ is a subset of $T(X) \times T(X)$. A graph variety $V' = Mod_g\Sigma'$ is called (x(yz))z with reverse arc graph variety if Σ' is a set of (x(yz))z with reverse arc term equation. A term equation $s \approx t$ is called an identity in a variety V if $\underline{A}(G)$ satisfies $s \approx t$ for all $G \in V$. An identity $s \approx t$ of a variety V is called a hyperidentity of a graph algebra $\underline{A}(G), G \in V$ whenever the operation symbols occurring in s and s are replaced by any term operations of $\underline{A}(G)$ of the appropriate arity, the resulting identities hold in $\underline{A}(G)$. An identity $s \approx t$ of a variety V is called a hyperidentity of V if it is a hyperidentity of A(G) for all $G \in V$.

In this paper we characterize all hyperidentities of each (x(yz))z with reverse arc graph variety. For identities, varieties and other basic concepts of universal algebra see e.g. [4].

Key Words: Varieties, (x(yz))z with reverse arc graph varieties, Term, Identities, Hyperidentities, Binary algebra, Graph algebra.

2000 Mathematics Subject Classification: 05C25, 08B15