International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 8 No. III (May, 2014), pp. 1-12

THE PRODUCT OF DIAMOND OPERATOR AND HELMOLTZ OPERATOR RELATED TO THE BIHARMONIC EQUATION AND THE WAVE EQUATION

T. PANYATIP

Division of Mathematics, Department of Science, Rajamangala University of Technology Lanna

Tak, 63000, THAILAND

Abstract

Firstly, we study the solution of equation $\diamond^{k}\left(\triangle+m^{2}\right)^{k} u(x)=f(x)$. Finally, we study the solution of nonlinear equation $\diamond^{k}\left(\triangle+m^{2}\right)^{k} u(x)=f\left(x, \triangle^{k-1} \square^{k}(\Delta+\right.$ $\left.m^{2}\right)^{k} u(x)$), where the operator \diamond^{k} and $\left(\triangle+m^{2}\right)^{k}$ are Diamond operator and Helmoltz operator, respectively. n is the dimension of the Euclidean space \mathbb{R}^{n}, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, k$ is a nonnegative integer, $u(x)$ is an unknown and f is a given function. It is found that the existence of the solution $u(x)$ of such equation depending on the condition of f and $\triangle^{k-1} \square^{k}\left(\triangle+m^{2}\right)^{k} u(x)$ and moreover such solution $u(x)$ related to the wave equation and biharmonic equation depending on the conditions of p, q and k.

Key Words : Diamond operator, Laplace operator, Helmoltz operator, Generalized functions.
AMS Subject Classification : 46F10.

