International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 8 No. III (May, 2014), pp. 77-89

# AVERAGE NUMBER OF MAXIMA OF A RANDOM SUM OF ORTHOGONAL POLYNOMIALS 

LOKANATH SAHOO ${ }^{1}$ AND MINA KETAN MAHANTI ${ }^{2}$<br>${ }^{1}$ Gopobandhu Science College, Athgarh, Odisha, India<br>${ }^{2}$ College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India


#### Abstract

Let $y=\sum_{k=0}^{n} Y_{k}(t) \psi_{k}(t)$ be a random polynomial such that $\left(Y_{0}(w), Y_{1}(w), \cdots, Y_{n}(w)\right)$ is a sequence of mutually independent normally distributed random variables with mean zero and variance one; $\left(\psi_{0}(t), \psi_{0}(t), \cdots, \psi_{n}(t)\right)$ be a sequence of normalized Jacobi polynomials, orthogonal with respect to the interval $(-1,1)$. It is proved that the average number of maxima of the random equation $y=0$ is asymptotic to $\frac{1}{2} \sqrt{\frac{3}{5}} n$.


Key Words : Expected number of real zeros, Kac-Rice formula, Normal density, Jacobi polynomial.

AMS Subject Classification : 60H99, 42BXX.

