International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 9 No. IV (December, 2015), pp. 81-91

UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE ONE SMALL FUNCTION WITH ITS DIFFERENTIAL POLYNOMIAL

HARINA P. WAGHMORE ${ }^{1}$ AND HUSNA V. ${ }^{2}$
1,2 Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560 056, India
E-mail: ${ }^{1}$ harinapw@gmail.com, ${ }^{2}$ husnav43@gmail.com

Abstract

In this paper, we investigate the uniqueness problems of meromorphic functions that share a small function with its differential polynomials, and give a result which is related to a conjecture of R. Bruck and improve the result of Lipei Liu [11].

1. Introduction and Main Results

In this paper, meromorphic functions mean meromorphic in the complex plane. We use the standard notations of Nevanlinna theory, which can be found in [10]. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ if $T(r, a)=S(r, f)$, i.e. $T(r, a)=o(T(r, f))$ as $r \rightarrow+\infty$ possibly outside a set of finite linear measure. We say

Key Words : Uniqueness, Meromorphic function, Differential polynomial, Shared value, Small function.
2010 AMS Subject Classification : Primary 30D35.
(c) http: //www.ascent-journals.com
that two meromorphic functions f and g share a small function a IM (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If $f-a$ and $g-a$ have the same zeros with the same multiplicities, then we say that f and g share a CM (counting multiplicities).
For any constant a, we denote by $N_{k)}\left(r, \frac{1}{f-a}\right)$ the counting function for zeros of $f-$ a with multiplicity no more than k, and by $\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)$ the corresponding one for which multiplicity is not counted. Let $N_{(k}\left(r, \frac{1}{f-a}\right)$ be the counting function for zeros of $f-a$ with multiplicity at least k and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ be the corresponding one for which multiplicity is not counted. Set
$N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$.
We define

$$
\Theta(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)} \quad, \quad \delta(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

We further define

$$
\delta_{k}(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{N_{k}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

Obviously,

$$
1 \geq \Theta(a, f) \geq \delta_{k}(a, f) \geq \delta(a, f) \geq 0
$$

In additional, we shall also use the following notations:
Let f and g be two non-constant meromorphic functions such that f and g share 1 IM. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ the counting function for 1-point of both f and g about which f has larger multiplicity than g, with multiplicity being not counted, and denote by $N_{11}\left(r, \frac{1}{f-1}\right)$ the counting function for common simple 1-point of both f and g, and denote by $N_{(22}\left(r, \frac{1}{f-1}\right)$ the counting function of those same multiplicity 1-point of both f and g and the multiplicity is ≥ 2. In the same way, we can define $\bar{N}_{L}\left(r, \frac{1}{g-1}\right), N_{11}\left(r, \frac{1}{g-1}\right)$, and $N_{(22}\left(r, \frac{1}{g-1}\right)$. Especially, if f and g share 1 CM , then $\bar{N}_{L}\left(r, \frac{1}{g-1}\right)=0$.
Bruck considered the uniqueness problem of an entire function sharing one value with its derivative and proved the following result.
Theorem $\mathbf{A}([1])$: Let $f(z)$ be a non-constant entire function. If f and f^{\prime} share the value 1 CM and if $N\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$. Then $\frac{f^{\prime}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$. Yang[6] and Zhang[8] extended Theorem A and obtained many excellent theorems.
Theorem $\mathbf{B}([\mathbf{6}])$: Let $f(z)$ be a non-constant meromorphic function and k be a positive integer. Suppose that f and $f^{(k)}$ share 1 CM and
$2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{f^{(k)}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)$,
for $r \in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$, then $\frac{f^{(k)}-1}{f-1} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.
Yu considered the problem of a meromorphic functions sharing one small function with its derivative and proved the following theorem.
Theorem $\mathbf{C}([7])$: Let f be a non-constant meromorphic function and $a(z)(\not \equiv 0, \infty)$ be a small function with respect to f. If
(i) f and a have no common poles,
(ii) $f-a$ and $f^{(k)}-a$ share the value 0 CM ,
(iii) $4 \delta(0, f)+2(8+k) \Theta(\infty, f)>19+2 k$, then $f \equiv f^{(k)}$, where k is a positive integer.

In the same paper, Yu posed four open questions. Lahiri [2], Liu and Gu [3], and Zhang [9] studied this questions and obtained a series results which answered the open questions. Recently, Zhang and $\mathrm{Lu}[10]$ considered the problem of f^{n} and $f^{(k)}$ sharing a small function and obtained the following results, which are the improvements and complements of above theorems.
Theorem $\mathbf{D}([\mathbf{1 0}])$: Let $k(\geq 1), n(\geq 1)$ be integers and f be a non-constant meromorphic function. Also, let $a=a(z)(\not \equiv 0, \infty)$ be a small function such that $T(r, a)=S(r, f)$, as $r \rightarrow \infty$. Suppose that f^{n} and $f^{(k)}$ share a IM and

$$
4 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+2 N_{2}\left(r, \frac{1}{f^{(k)}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

or f^{n} and $f^{(k)}$ share $a \mathrm{CM}$ and

$$
2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+N_{2}\left(r, \frac{1}{f^{(k)}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

for $r \in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$ then $\frac{f^{(k)}-a}{f-a} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.
Theorem $\mathbf{E}([\mathbf{1 0}])$: Let $k(\geq 1), n(\geq 1)$ be integers and f be a non-constant meromorphic function. Also, let $a=a(z)(\not \equiv 0, \infty)$ be a small function with respect to f. If f^{n} and $f^{(k)}$ share a IM and

$$
(2 k+6) \Theta(\infty, f)+4 \Theta(0, f)+2 \delta_{2+k}(0, f)>2 k+12-n
$$

or f^{n} and $f^{(k)}$ share a CM and

$$
(k+3) \Theta(\infty, f)+2 \Theta(0, f)+\delta_{2+k}(0, f)>k+6-n
$$

then $f^{n}=f^{(k)}$.
In 2010, Lipei Lu [11] improved the above result and proved the following theorem.
Theorem $\mathbf{F}([11])$: Let $k(\geq 1), n(\geq 1), m(\geq 2)$ be integers and f be a non-constant meromorphic function. Also, let $a=a(z)(\not \equiv 0, \infty)$ be a small function such that $T(r, a)=S(r, f)$, as $r \rightarrow \infty$. Suppose that f^{n} and $\left(f^{(k)}\right)^{m}$ share a IM and

$$
\frac{4}{m} \bar{N}(r, f)+\frac{2}{m} \bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+\frac{5}{m} \bar{N}\left(r, \frac{1}{f^{(k)}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right),
$$

or f^{n} and $\left(f^{(k)}\right)^{m}$ share a CM and

$$
\frac{2}{m} \bar{N}(r, f)+\frac{1}{m} \bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+\frac{2}{m} \bar{N}\left(r, \frac{1}{f^{(k)}}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right),
$$

for $r \in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$, then $\frac{\left(f^{(k)}\right)^{m}-a}{f^{n}-a} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.
We need the following definition.
Definition $1([14])$: Let $n_{0 j}, n_{1 j}, \ldots, n_{k j}$ be non negative integers.

- The expression $M_{j}[f]=(f)^{n_{0 j}}\left(f^{\prime}\right)^{n_{1 j}} \ldots\left(f^{(k)}\right)^{n_{k j}}$ is called a differential monomial generated by f of degree $d\left(M_{j}\right)=\sum_{i=0}^{k} n_{i j}$ and weight $\Gamma_{M_{j}}=\sum_{i=0}^{k}(i+1) n_{i j}$.
- The sum $P[f]=\sum_{i=1}^{t} b_{j} M_{j}[f]$ is called a differential polynomial generated by f of degree $\bar{d}(P)=\max \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$, where $T\left(r, b_{j}\right)=S(r, f)$ for $j=1,2, \ldots t$.
- The number $\underline{d}(P)=\min \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$ and k the highest order of the derivative of f in $P[f]$ are called respectively the lower degree and order of $P[f]$.
- $P[f]$ is said to be homogeneous if $\bar{d}(P)=\underline{d}(P)$.
- $P[f]$ is called a linear diferential polynomial generated by f if $\bar{d}(P)=1$. Otherwise $P[f]$ is called non-linear differential polynomial. We denote by $Q=\max \left\{\Gamma_{M_{j}}-\right.$ $\left.d\left(M_{j}\right): 1 \leq j \leq t\right\}=\max \left\{n_{1 j}+2 n_{2 j}+\ldots+k n_{k j}: 1 \leq j \leq t\right\}$.

In this paper, we will study the problem of a meromorphic function sharing one small function with its differential polynomial and obtain the following result which is an improvement of the above Theorem F of Lipeu Liu[11].
Theorem 1 : Let f be a non-constant meromorphic function, and $P[f]$ be a nonconstant differential polynomial generated by f of degree $\bar{d}(P)$. Let $a \equiv a(z)(\not \equiv 0, \infty)$ be a small meromorphic function, such that $T(r, a)=S(r, f)$, as $r \rightarrow \infty$. Suppose that f^{n} and $P[f]$ share a IM. and

$$
\begin{equation*}
4 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+5 \bar{N}\left(r, \frac{1}{P[f]}\right)<(\lambda+o(1)) T(r, P[f]) \tag{1.1}
\end{equation*}
$$

or f^{n} and $P[f]$ share $a \mathrm{CM}$ and

$$
\begin{equation*}
2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+2 \bar{N}\left(r, \frac{1}{P[f]}\right)<(\lambda+o(1)) T(r, P[f]) \tag{1.2}
\end{equation*}
$$

for $r \in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$, then $\frac{P[f]-a}{f^{n}-a} \equiv c$ for some constant $c \in \mathbb{C} \backslash\{0\}$.

2. Some Lemmas

For the proof of our results, we need the following lemmas:
Lemma 2.1([2], [9]) : Let $f(z)$ be a non-constant meromorphic function, k be a positive integer, then

$$
\begin{aligned}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) & \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq(p+k) \bar{N}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

Lemma 2.2[4]: Let $f(z)$ be a non-constant meromorphic function, n be a positive integer. $Q(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f$, where a_{i} are meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f)(i=1,2, \ldots n), a_{n} \neq 0$. Then
$T(r, Q(f))=n T(r, f)+S(r, f)$.
Lemma 2.3[13] : Let f be a non-constant meromorphic function and let

$$
R(f)=\frac{\sum_{k=0}^{n} a_{k} f^{k}}{\sum_{j=0}^{m} b_{j} f^{j}}
$$

be an irreducible rational function in f with constant coefficients $\left\{a_{k}\right\}$ and $\left\{b_{j}\right\}$ where $a_{n} \neq 0$ and $b_{m} \neq 0$. Then

$$
T(r, R(f))=d T(r, f)+S(r, f)
$$

where $d=\max \{n, m\}$.
Lemma 2.4[14] : Let f be a meromorphic function and $P[f]$ be a differential polynomial. Then $m\left(r, \frac{P[f]}{f^{\overline{(}(P)}}\right) \leq(\bar{d}(P)-\underline{d}(P)) m\left(r, \frac{1}{f}\right)+S(r, f)$.
Lemma 2.5[14] : Let f be a meromorphic function and $P[f]$ be a differential polynomial. Then we have
$N\left(r, \frac{f^{\bar{d}(P)}}{P[f]}\right) \leq\left(\Gamma_{p}-\bar{d}(P)\right) \bar{N}(r, f)+(\bar{d}(P)-\underline{d}(P)) N_{(k+1}\left(r, \frac{1}{f}\right)+Q \bar{N}_{(k+1}\left(r, \frac{1}{f}\right)+\bar{d}(P) N_{k)}\left(r, \frac{1}{f}\right)+$ $S(r, f)$.

3. Proof of Theorem 1

Let $F=\frac{f^{n}}{a}, G=\frac{P[f]}{a}$, then $F-1=\frac{f^{n}-a}{a}, G-1=\frac{P[f]-a}{a}$. Since f^{n} and $P[f]$ share a $\operatorname{IM}(\mathrm{CM}), F$ and G share $1 \mathrm{IM}(\mathrm{CM})$ except the zeros and poles of $a(z)$.
Define

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right), \tag{3.1}
\end{equation*}
$$

we have the following two cases to investigate
Case 1: $H \equiv 0$. On integration we get from (3.1)

$$
\begin{equation*}
\frac{1}{F-1} \equiv C \frac{1}{G-1}+D \tag{3.2}
\end{equation*}
$$

where C and D are constants and $C \neq 0$. If there exists a pole z_{0} of f with multiplicity p which is not zero or pole of a, then z_{0} is a pole of G with multiplicity $p d+(\Gamma-d)$, a pole of F with multiplicity p. This contradicts with (3.2) as Q contains at least one derivative. Therefore, we have

$$
\begin{gather*}
\bar{N}(r, f) \leq \bar{N}(r, a)+\bar{N}\left(r, \frac{1}{a}\right)=S(r, f), \tag{3.3}\\
\bar{N}(r, F)=S(r, f), \bar{N}(r, G)=S(r, f) .
\end{gather*}
$$

From (3.2), we also get that F and G share the value 1 CM.
Next we prove $D=0$.
Suppose $D \neq 0$, then we have

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{D\left(G-1+\frac{C}{D}\right)}{G-1}, \tag{3.4}
\end{equation*}
$$

So,

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{D\left(G-1+\frac{C}{D}\right)}\right)=\bar{N}(r, F)=S(r, f) \tag{3.5}
\end{equation*}
$$

If $\frac{C}{D} \neq 1$, by the second fundamental theorem and (3.5), and $S(r, G)=S(r, f)$, we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1+\frac{C}{D}}\right)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \leq N_{2}\left(r, \frac{1}{G}\right)+S(r, f) \leq T(r, G)+S(r, f)
\end{aligned}
$$

This gives that $N_{2}\left(r, \frac{1}{G}\right)=T(r, G)+S(r, f)$
So, we have $N_{2}\left(r, \frac{1}{P[f]}\right)=T(r, P[f])+S(r, f)$
This contradicts with conditions (1.1),(1.2).
If $\frac{C}{D}=1$, from (3.2) we know

$$
\frac{1}{F-1} \equiv C \frac{G}{G-1}
$$

then

$$
\begin{equation*}
\left(F-1-\frac{1}{C}\right) G=-\frac{1}{C} \tag{3.6}
\end{equation*}
$$

From (3.6) it follows that

$$
\begin{equation*}
N_{(k+1}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{P[f]}\right) \leq N\left(r, \frac{1}{G}\right)=S(r, f) \tag{3.7}
\end{equation*}
$$

Again from (3.6) we see that

$$
\frac{1}{f^{\bar{d}(P)}\left(f^{n}-\left(1+\frac{1}{C}\right) a\right)} \equiv \frac{-C}{a^{2}} \cdot \frac{P[f]}{f^{\bar{d}(P)}}
$$

Hence by the first fundamental theorem, (3.3),(3.7), Lemma 2.3, 2.4 and 2.5 we get that

$$
\begin{align*}
(n+\bar{d}(P)) T(r, f)= & T\left(r, f^{\bar{d}(P)}\left(f^{n}-\left(1+\frac{1}{C}\right) a\right)\right)+S(r, f) \\
= & T\left(r, \frac{1}{f^{\bar{d}(P)}\left(f^{n}-\left(1+\frac{1}{C}\right) a\right)}\right)+S(r, f) \\
= & T\left(r, \frac{P[f]}{f^{\bar{d}(P)}}\right)+S(r, f) \\
\leq & m\left(r, \frac{P[f]}{f^{\bar{d}(P)}}\right)+N\left(r, \frac{P[f]}{f^{\bar{d}(P)}}\right)+S(r, f) \\
\leq & (\bar{d}(P)-\underline{d}(P))\left[T(r, f)-N_{k)}\left(r, \frac{1}{f}\right)+N_{(k+1}\left(r, \frac{1}{f}\right)\right] \\
& +(\bar{d}(P)-\underline{d}(P)) N_{(k+1}\left(r, \frac{1}{f}\right)+Q \overline{N_{(}}\left(k+1\left(r, \frac{1}{f}\right)+\bar{d}(P) N_{k)}\left(r, \frac{1}{f}\right)+S(r, f)\right. \\
\leq & (\bar{d}(P)-\underline{d}(P)) T(r, f)+\underline{d}(P) N_{k)}\left(r, \frac{1}{f}\right)+S(r, f) \tag{3.8}
\end{align*}
$$

From (3.8) it follows that $n T(r, f) \leq S(r, f)$, which is absurd.
Hence $D=0$ and so $\frac{G-1}{F-1}=C$ or $\frac{P[f]-a}{f^{n}-a}=C$
This proves the theorem.
Case 2: $H \not \equiv 0$. From (3.1) it is to see that $m(r, H)=S(r, f)$.
Subcase 2.1 : Suppose that f^{n} and $P[f]$ share a IM, in this case, F and G share 1 IM except the zeros and poles of $a(z)$. We have

$$
\begin{equation*}
\bar{N}(r, F)=\bar{N}(r, f)+S(r, f) \quad, \quad \bar{N}(r, G)=\bar{N}(r, f)+S(r, f) \tag{3.9}
\end{equation*}
$$

and by (3.1), we have

$$
\begin{align*}
N(r, H) & \leq \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{3.10}
\end{align*}
$$

where $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes the counting function of the zeros of F^{\prime}, which are not the zeros of F and $F-1$, and $\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes its reduced form. In the same way, we can define $N_{0}\left(r, \frac{1}{G^{\prime}}\right)$ and $\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)$.
From the definitions of F and G, we get

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right)= & N_{11}\left(r, \frac{1}{G-1}\right)+S(r, f) \quad N_{(22)}\left(r, \frac{1}{F-1}\right)=N_{(22}\left(r, \frac{1}{G-1}\right)+S(r, f) \tag{3.11}\\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{1}{F-1}\right)-\bar{N}\left(r, \frac{1}{F-1}\right) \leq N\left(r, \frac{F}{F^{\prime}}\right) \\
& \leq \bar{N}\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, f) \tag{3.12}\\
\bar{N}\left(r, \frac{1}{F}\right)= & \bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f) \\
\leq & N_{11}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(22}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) \tag{3.13}
\end{align*}
$$

Let z_{0} be a common simple zero of $F-1$ and $G-1$, but $a\left(z_{0}\right) \neq 0, \infty$.
But calculation, we know that z_{0} is a zero of H, so

$$
\begin{equation*}
N_{11}\left(r, \frac{1}{F-1}\right) \leq N\left(r, \frac{1}{H}\right)+S(r, f) \leq T(r, H)+S(r, f) \leq N(r, H)+S(r, f) \tag{3.14}
\end{equation*}
$$

From $(3.10),(3.11),(3.12),(3.13)$ and (3.14), we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G-1}\right) \leq & \bar{N}(r, F)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \\
& +\bar{N}_{(22}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \\
\leq & \bar{N}(r, F)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{3.15}
\end{align*}
$$

By the second fundamental theorem, we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \\
& \leq 2 \bar{N}(r, G)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, G) \\
& \leq 2 \bar{N}(r, G)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{aligned}
$$

By Lemma (2.1), and noting that $\bar{N}\left(r, \frac{1}{G^{\prime}}\right)=N_{1}\left(r, \frac{1}{G^{\prime}}\right)$, we get

$$
T(r, P[f]) \leq 4 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+5 \bar{N}\left(r, \frac{1}{P[f]}\right)+S(r, f)
$$

which contradicts (1.1).
Subcase 2.2 : Suppose that f^{n} and $P[f]$ share $a \mathrm{CM}$, in the case, F and G share 1 CM except the zeros and poles of $a(z)$. From (3.1), we have

$$
\begin{equation*}
N(r, H) \leq \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{3.16}
\end{equation*}
$$

Let z_{0} be a common simple zero of $F-1$ and $G-1$, but $a\left(z_{0}\right) \neq 0, \infty$.
By calculation, we know that z_{0} is a zero of H, so

$$
\begin{align*}
N_{1)}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{1}{H}\right)+S(r, f) \tag{3.17}\\
& \leq N(r, H)+S(r, f)
\end{align*}
$$

Noting that
$N_{1)}\left(r, \frac{1}{F-1}\right)=N_{1)}\left(r, \frac{1}{G-1}\right)+S(r, f)$,
so

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{G-1}\right) & =N_{1)}\left(r, \frac{1}{F-1}\right)+N_{(2}\left(r, \frac{1}{F-1}\right) \\
& \leq \bar{N}(r, F)+N_{(2}\left(r, \frac{1}{F}\right)+N_{(2}\left(r, \frac{1}{G}\right)+N_{(2}\left(r, \frac{1}{F-1}\right) \\
& +N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{aligned}
$$

By the second fundamental theorem, we can get

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \\
& \leq 2 \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+N_{(2}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F^{\prime}}\right)+S(r, f) \\
& =2 \bar{N}(r, G)+N_{(2}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F^{\prime}}\right)+S(r, G)
\end{aligned}
$$

Similarly we have

$$
T(r, P[f]) \leq 2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{\left(f^{n} / a\right)^{\prime}}\right)+2 \bar{N}\left(r, \frac{1}{P[f]}\right)+S(r, f)
$$

This contradicts with (1.2). Theorem 1 thus completely proved.

References

[1] Bruck R., On entire functions which share one value with their first derivatives, Results math., 30 (1996), 21-24.
[2] Lahiri I., Uniqueness of meromorphic function and its derivative, J. Inequal. Pure Appl. Math., 5(1) (2004), 9, Art. 20.
[3] Liu L. P. and Gu Y. X., Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai. Math. J., 27(2004), 272-279.
[4] Yang C. C., On deficiencies of differential polynomials, II, Math. Z., 125 (1972), 107-112.
[5] Yang C. C. and Yi H. Y., Uniqueness Theory of Meromorphic Functions, Science, Beijing, (2006).
[6] Yang L. Z., Solution of a differential equation and its applications, Kodai. Math. J. 22 (1999), 458-464.
[7] Yu K.W., On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure Appl. Math., 4(1) (2003), Art. 21 (Online:http: //jipam.vu.edu.au/).
[8] Zhang Q. C., The uniqueness of meromorphic functions with their derivatives, Kodai Math. J., (1998), 179-184.
[9] Zhang Q. C., Meromorphic function that shares one small function with its derivatives, J. Inequal. Pure. Appl. Math., 6(4) (2005), Art. 116 (Online:http: //jipam.vu.edu.au/).
[10] Zhang Tongdui and Lu Weiran, Notes on a meromorphic function sharing one small function with its derivative, Complex Variables and Elliptic Equations, 53(9) (2008), 857-867.
[11] Liu Lipei, Uniqueness of meromorphic functions that share one small function with their derivatives, J. of Math. Sci Advances and Applications, 6(2) (2010), 241-255.
[12] Chuang T., On differential polynomials. In : Analysis Of one complex variable (Laramie, Wyo., 1985) World Sci. Publishing, Singapore, (1987), 12-32.
[13] Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions. Theory Funct. Funct. Anal. Appl., 14 (1971), 83-87.
[14] Banerjee Abhijith, Ahmed Molla Basir, Meromorphic function sharing a small function with its differential polynomial, Mathematica, 54(1) (2015), 33-45.

