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Abstract

The aim of this manuscript is to establish fixed point and common fixed point the-
orems satisfying contractive conditions of Banach spaces. The results proved there
is the extension of some wellknown results in the existing literature.

1. Introduction

In 1976, Rhoades [15] introduced the convergence result of Zamfirescu operators using

Mann and Ishikawa iterative schemes. Berinde [3] established the class of operators that

is more elaborate than the class Zamfirescu operators. It introduced the convergence re-

sults of Ishikawa iteration process from this class of operators. After strong convergence

of two-step iterative processes, in 2006, Rafiq [14] studied the convergence of quasi
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-contractive mappings by a three-step iterative scheme. Olatinwo [12] introduces conver-

gence results of the class of generalized Zamfirescu operators under the Jungck-Ishikawa

and the Jungck-Mann iteration scheme and Olatinwo [11] studied the convergence for

generalized Zamfirescu operators by Jungck-Noor iterative scheme. Bosede [5] intro-

duced strong convergence results of contractive-like mappings with the Jungck-Ishikawa

and the Jungck-Mann iterative schemes.After many researchers has studied this con-

cept in various ways. Many researchers studying strong convergence the following are

Rhoades [15], Berinde [3,4], Olatinwo [11,12] Osilike and Udomene [13], Bosede [5] and

Bele et al., [2]. The final concept of this task will study the intensity of iterative methods.

2. Preliminaries and Definitions

Firstly, useful definitions, theorems, and lemmas in our results.

In 1953, W. R. Mann [9] introduced the following iterative scheme and {xn} defined by

xn+1 = (1− αn)xn + αnTxn

where, {αn}, n ∈ N is the sequence of positive numbers in [0, 1].

In 1974, Ishikawa [7] introduced the following iterative scheme and {xn} defined by

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTxn

where, {αn}, }βn}, n ∈ N are the sequence of positive numbers in [0, 1].

In 2000, Noor [10] introduced the following iterative scheme and {xn} defined by

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)Xn + βnTzn

zn = (1− γn)xn + γnTxn (1)

where, {αn}, {βn} and {γn}, n ∈ N are the sequence of positive numbers in [0, 1].

We have to introduce the following new iterative scheme and {xn} defined by

Xn+1 = (1− αn)Xn + αn T1yn

yn = (1− βn)Xn + βnT2zn
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zn = (1− γn)xn + γnT3xn (2)

where, {αn}, {βn} and {γn}, n ∈ N are the sequence of positive numbers in [0,1].

Theorem 1.1 [16]: Let K be a non-empty closed convex subset of a metric space B

and T : K → K be a mapping on K. Then the mapping T is called Zamfirescu operator

if and only if there exists real numbers a, b, c such that

1. d(Tx, Ty) ≤ ad(x, y)

2. d(Tx, Ty) ≤ b{d(x, Tx) + d(y, Ty)}

3. d(Tx, Ty) ≤ c{d(x, Ty) + d(y, Tx)}.

Then T has a unique fixed point q and the Picard iterative scheme {xn} defined by

xn+1 = Txn

converges to q for any arbitrary but fixed x0 ∈ K.

In 2005, Berinde [3] discussed a new class of operators on metric space, Banach space

and it is given by

‖Tx− Ty‖ = 2δ‖x− Tx‖+ L‖x− y‖, ∀ x, y ∈ K and δ, L ∈ [0, 1) (3)

δ = max

{
a,

b

1− b
,

c

1− c

}
, 0 ≤ δ < 1.

Definition : Let K be a non-empty subset of a Banach space B and let T : K → K

be a self-mapping of K and let F = {q ∈ K : Tq = q} is the set of fixed points of T .

The contractive condition (3) was used by Olatinwo [12] to show that strong convergence

results for Jungck-Ishikawa iteration process.

There exists a real number δ ∈ [0, 1) and a monotonic increasing function φ : R+ →
R+ such that φ(0) = 0 and ∀ x, y ∈ K, we have

‖Tx− Ty‖ ≤ φ(‖Sx− Tx‖) + δ‖Sx− Sy‖. (4)

We take S = I in (4), the contractive mapping as follows.

There exists a real number δ ∈ [0, 1) and a monotonic increasing function φ : R+ → R+

such that φ(0) = 0 and ∀ x, y ∈ K, we have

‖Tx− Ty‖ ≤ φ(‖x− Tx‖) + δ‖x− y‖ (5)
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Lemma: 1.1 [15] : Let p be a real number such that 0 ≤ p < 1 and {bn} be sequences

of non negative real numbers such that lim
n→∞

bn = 0.

3. Main Results

We now prove our main theorem as follows.

Theorem 3.2.1 : Let K be a non-empty closed convex subset of a Banach space B

and T : K → K be a mapping satisfying (5) and F (T ) 6= φ. Let {xn}∞n=0 be defined by

iteration scheme (1). If {an}, {bn} and {cn} are sequences of positive numbers in [0, 1]

such that
∞∑
n=0

an =∞. Then {xn}∞n=0 converges strongly to fixed points of T .

Proof: Let q ∈ F (T ) then {xn}∞n=0 we have

‖xn+1 − q‖ = ‖(1− an)xn + anTyn − q‖

≤ (1− an)‖xn − q‖+ an‖Tyn − q‖

≤ (1− an)‖xn − q‖+ anφ‖Tq − q‖+ anδan‖yn − q‖

= (1− an)‖xn − q‖+ anδ‖yn − q‖. (6)

Now

‖z − q‖ = ‖(1− cn)xn + cnTxn − q‖

≤ (1− cn)‖xn − q‖+ cn‖Txn − q‖

≤ (1− cn)‖xn − q‖+ cnδ‖xn − q‖+ cnφ(‖Tq − q‖)

= (1− cn)‖xn − q‖+ cnδ‖xn − q‖

= (1− (1− δ)cn)‖xn − q‖ (7)

and

‖yn − q‖ = ‖(1− bn)xn + bnTxn − q‖

≤ (1− bn)‖xn − q‖+ bn‖Tzn − q‖

≤ (1− bn)‖xn − q‖+ bnδ‖zn − q‖+ bnφ(‖Tq − q‖)

= (1− bn)‖xn − q‖+ bnδ‖zn − q‖ (8)

From equation (7) and (8)

‖yn − q‖ ≤ (1− bn‖xn − q‖+ bnδ(1− (1− δ)cn)‖xn − q‖

= [(1− bn) + bnδ(1− (1− δ)cn)]‖xn − q‖. (9)
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Therefore using (9) and (6) we obtain

‖xn+1 − q‖ ≤ (1− an)‖xn − q‖+ anδ‖yn − q‖

≤ (1− an)‖xn − q‖+ anδ[(1− bn) + bnδ(1− (1− δ)cn)]‖xn − q‖

= [1− (1− δ)an − (1− δ)bnanδ − (1− δ)cnbnanδ2]‖xn − q‖.

Thus,

‖xn+1 − q‖ ≤ [1− (1− δ)an]‖xn − q‖

≤
n∏

i=0

[1− (1− δ)ai]‖x0 − q‖

≤ ‖x0 − q‖ exp

(
n∑

i=0

−(1− δ)ai

)
. (10)

Since 0 < δ < 1, αi ∈ [0, 1] and
∞∑
n=0

an =∞, so exp

(
n∑

i=0
−|(1− δ)ai

)
→ 0 as n→∞.

Hence, it follows from (10) and Lemma 1.1 we have lim
n→∞

‖xn+1 − q‖ = 0.

Thus, {xn}∞n=0 converges strongly to q of the fixed point of T .

Theorem 3.2.2 : Let K be a non-empty closed conved subset of a Banach space B

and T1, T2, T3 : K → K be a mapping satisfying (5) and
3⋂

i=1
F |(Ti) 6= φ. Let {xn}∞n=0 be

defined by iteration scheme (2). If {an}, {bn} and {cn} are sequences of positive numbers

in [0, 1] such that
∞∑
n=0

an = ∞. Then {xn}∞n=0 converges strongly to the common fixed

point of T1, T2 and T3.

Proof : Let q ∈ F (T ) then {xn}∞n=0 we have

‖xn+1 − q‖ = ‖(1− an)xn + anT1yn − q‖

≤ (1− an)‖xn − q‖+ an‖T1yn − q‖

≤ (1− an)‖xn − q‖+ anδ‖yn − q‖+ anφ(‖T1q − q‖)

= (1− an)‖xn − q‖+ anδ‖yn − q‖. (11)
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Now,

‖zn − q‖ = ‖(1− cn)xn + cnT3xn − q‖

≤ (1− cn)‖xn − q‖+ cn‖T3xn − q‖

≤ (1− cn)‖xn − q‖+ cnδ‖xn − q‖+ cnφ(‖T3q − q‖)

= (1− cn)‖xn − q‖+ cnδ‖xn − q‖

= (1− (1− δ)cn)‖xn − q‖ (12)

‖yn − q‖ = ‖(1− bn)xn + bnT2xn − q‖

≤ (1− bn)‖xn − q‖+ bn‖Tzn − q‖

≤ (1− bn)‖xn − q‖+ bnδ‖zn − q‖+ bnφ(‖Tq − q‖)

= (1− bn)‖xn − q‖+ bnδ‖zn − q‖. (13)

From equation (12) and (13)

‖yn − q‖ ≤ (1− bn)‖xn − q‖+ bnδ(1− (1− δ)cn)‖xn − q‖

= [(1− bn) + bnδ(1− (1− δ)cn)]‖xn − q‖. (14)

Therefore using (14) and (11), we obtain

‖xn+1 − q‖ ≤ (1− an)‖xn − q‖+ anδ‖yn − q‖

≤ (1− an)‖xn − q‖+ anδ[(1− bn) + bnδ(1− (1− δ)cn)]‖xn − q‖

≤ [1− (1− δ)an − (1− δ)bnanδ − (1− δ)cnbnanδ2]‖xn − q‖

≤ [1− (1− δ)an]‖xn − q‖

≤
n∏

i=0

[1− (1− δ)ai]‖x0 − q‖

≤ ‖x0 − q‖ exp

(
n∑

i=0

−(1− δ)ai

)
. (15)

Since 0 ≤ δ < 1, ai ∈ [0, 1] and
∞∑
n=0

an =∞, so exp

(
n∑

i=0
−(1− δ)ai

)
→ 0 as n→∞.

Hence, it follows from (15) and Lemma 1.1 we have lim
x→∞

‖xn+1 − q‖ = 0.

Therefore, {xn}∞n=0 converges strongly to q of the fixed point of T1, T2 and T3.
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