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Abstract
Cone rectangular metric spaces were introduced by A. Azam, M. Arshad and I.
Beg [1] and the Banach contraction principle was proved by them. M. Jleli and
B. Samet [8] proved the Kannan’s fixed point theorem in cone rectangular metric
spaces. We extend the results to three self maps and prove the existence of common
fixed points in these spaces.

1. Introduction and Preliminaries

Cone metric spaces were introduced by L. G. Huang and X. Zhang [7]. They proved

fixed point theorems for contractive type mappings in a normal cone metric space.In

[12], Rezapour and Hamlbrani proved results in [7] removing the condition of normality
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of the cone. Some more results in cone metric spaces were proved in [2], [3] and [4].

Following A. Branciari [5], cone rectangular metric spaces were introduced by A. Azam,

M. Arshad and I. Beg [1] in which they replaced the triangular inequality in a metric by

the rectangular inequality and proved the Banach contraction principle for such spaces.

The Kannan’s fixed point theorem was proved by M. Jleli and B. Samet [8] in cone

rectangular metric spaces.

Many useful results on cone rectangular spaces have been proved in [6], [9], [10], [11]

and [13]. In this paper, we have proved common fixed point theorems for three self

maps which are weakly compatible. They are extensions of several known results in the

literature.

Let E be a real Banach space and P a subset of E. P is called a cone if and only if:

(i) P is closed, nonempty,and P 6= {θ}.

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P .

(iii) x ∈ Pand− x ∈ P ⇒ x = θ.

Given a cone P ⊂ E we define a partial ordering ≤ with respect to P by:

x ≤ y ⇔ y − x ∈ P

We shall write x < y to indicate that x ≤ y but x 6= y, while x � y will stand for

y − x ∈ intP ,int P denotes the interior of P .

The cone P is called normal if there is a number k > 0 such that for all x, y ∈ E,

θ ≤ x ≤ y ⇒ ‖x‖ ≤ k ‖y‖
where‖.‖ is the norm in E.Here number k is called the normal constant of P .

In the following we always suppose that E is a Banach space, P is a cone in E with

intP 6= φ and ≤ is partial ordering with respect to P .

Definition 1.1 [7] : Let X be a nonempty set.If the mapping ρ : X ×X → E satisfies:

(a) θ < ρ(x, y) for all x, y ∈ X, x 6= y and ρ(x, y) = θ if and only if x = y.

(b) ρ(x, y) = ρ(y, x) for all x, y ∈ X.

(c) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for all x, y, z ∈ X.
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Then (X, ρ) is a cone metric space.

The following remark will be useful in proving the results which follow:

Remark 1.2 [10] : Let P be a cone in a real Banach space E and let a, b, c ∈ P ,let P 0

denote the interior of P then,

(a)If a ≤ b and b � c, then a � c.

(b)If a � b and b � c,then a � c.

(c)If θ ≤ u � c, for each c ∈ P 0, then u = θ

(d)If c ∈ P 0 and an → θ,then there exists,n0 ∈ N such that for all n > n0, we have

an � c.

(e)If θ ≤ an ≤ bn, for each n and an → a, bn → b, then a ≤ b.

(f)If a ≤ λa, where 0 < λ < 1, then a = θ.

The concept of cone metric spaces is more general than that of metric spaces since each

metric space is a cone metric space with E = R and P = [0,+∞).

Definition 1.3 [1] : Let X be a nonempty set.If the mapping d : X ×X → E satisfies:

(a) θ < d(x, y) for all x, y ∈ X, x 6= y and d(x, y) = θ if and only if x = y.

(b) d(x, y) = d(y, x) for all x, y ∈ X.

(c) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and for all distinct points

u, v ∈ X \ {x, y} { rectangular property }.

Here d is called a cone rectangular metric on X, and (X, d)is called a cone rectangular

metric space.

Example 1.4 [8] : Let X = R, E = R2 and P = {(x, y) : x, y ≥ 0}
Define d : X ×X → E as follows:

d(x, y) =


(0, 0) if x = y;
(3a, 3) if x and y are both in {1, 2}, x 6= y;
(a, 1) if x and y are not both at a time in {1, 2}, x 6= y

where a > 0 is a constant.Then (X, d) is a cone rectangular metric space.

But it is not a cone metric space since d(1, 2) = (3a, 3) > d(1, 3) + d(3, 2) = (2a, 2),the

triangle inequality does not hold true.

Definition 1.5 [8] : Let (X, d) be a cone rectangular metric space. Let {xn} be a

sequence in X and x ∈ X. If for every c ∈ E, c � θ there is N such that for all
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n > N, d(xn, x) � c, then {xn} is said to be convergent to x and x is the limit of {xn}.
This is denoted be xn → x as n → +∞.

Definition 1.6 [8] : Let (X, d) be a cone rectangular metric space,{xn} be a sequence

in X. If for any c ∈ X with θ � c, there is N such that for all n, m > N, d(xn, xm) � c,

then {xn} is called a Cauchy sequence in X.

Definition 1.7 [8] : Let (X, d) be a cone rectangular metric space.If every Cauchy

sequence is convergent in X, then X is called a complete cone rectangular metric space.

Definition 1.8 [4] : Let f and g be two self maps of a nonempty set X. If fx = gx = y

for some x ∈ X, then x is called the coincidence point of f and g and y is called the

point of coincidence of f and g.

Definition 1.9 : Two self mappings f and g are said to be weakly compatible if they

commute at their coincidence points, that is fx = gx implies that fgx = gfx.

Proposition [4] : If f and g are weakly compatible self maps of a nonempty set X

such that they have a unique point of coincidence i.e. fx = gx = y, then y is the unique

common fixed point of f and g.

2. Main Results

In this section we prove two fixed point theorems for cone rectangular metric spaces.

Theorem 2.1 : Let (X, d) be a cone rectangular metric space and suppose the mappings

f, g, h : X → X satisfy

d(fx, gy) ≤ λd(hx, hy) (1)

for all x, y ∈ X where λ ∈ [0, 1). If f(X) ∪ g(X) ⊆ h(X) and h(X) is a complete

subspace of X, then f, g and h have a unique point of coincidence. Moreover, if (f, h)

and (g, h) are weakly compatible, then f, g and h have a unique common fixed point.

Proof : Let x0 ∈ X. Define a sequence {xn} in X as hx1 = fx0. This can be done since

f(X) ⊆ h(X). Also we can choose x2 such that hx2 = gx1. Continuing this process

having chosen xn we can choose xn+1 such that

hxn+1 = fxn and hxn+2 = gxn+1, n = 0, 1, 2, · · · .

If hxn = hxn+1, then hxn = fxn = gxn, and xn is a coincidence point of f, g and h.
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Hence assuming xn 6= xn+1, for n = 0, 1, 2..., we have

d(hxn, hxn+1) = d(fxn−1, gxn)

≤ λd(hxn−1, hxn)

≤ λ2d(hxn−2, hxn−1)
...

≤ λnd(hx0, hx1)

Hence,

d(hxn, hxn+1) ≤ λnd(hx0, hx1) (2)

Again,

d(hxn, hxn+2) = d(fxn−1, gxn+1)

≤ λ[d(hxn−1, hxn+1)]

≤ λ[d(hxn−1, hxn) + d(hxn, hxn+2) + d(hxn+2, hxn+1)]

≤ λ[λn−1d(hx0, hx1) + d(hxn, hxn+2) + λnd(hx0, hx1)]

(1− λ)d(hxn, hxn+2) ≤ λnd(hx0, hx1) + λn+1d(hx0, hx1)

d(hxn, hxn+2) ≤
λn(1 + λ)

1− λ
d(hx0, hx1)

d(hxn, hxn+2) ≤ λnβd(hx0, hx1) (3)

where β = (1+λ)
1−λ > 0

For the sequence {hxn}, we consider d(hxn, hxn+p) in two parts, p is even and p is odd.

If p is odd ,let p = 2m + 1, m ≥ 1, then by (2) and the rectangle inequality, we have,

d(hxn, hxn+2m+1) ≤ d(hxn, hxn+1) + d(hxn+1, hxn+2) + ... + d(hxn+2m, hxn+2m+1)

≤ λnd(hx0, hx1) + λn+1d(hx0, hx1) + ... + λn+2m−1d(hx0, hx1)

≤ λn

1− λ
d(hx0, hx1)



130 SUNANDA R. PATIL & J. N. SALUNKE

If p is even, let p = 2m, m ≥ 2, then by (2),(3) and the rectangle inequality, we have,

d(hxn, hxn+2m) ≤ d(hxn, hxn+2) + d(hxn+2, hxn+3) + ... + d(hxn+2m−1, hxn+2m)

≤ λnβd(hx0, hx1) + λn+2d(hx0, hx1) + ... + λn+2m−1d(hx0, hx1)

≤ λnβd(hx0, hx1) +
λn

1− λ
d(hx0, hx1)

As β > 0 and λ ∈ [0, 1), λnβ → θ, λn

1−λ → θ, so by (a) and (d) of Remark 1.2, for every

c ∈ E with θ � c, there exits n0 ∈ N such that d(hxn, hxn+p) � c for all n > n0.

Hence, {hxn} is a Cauchy sequence in X. Since h(X) is complete subspace of X, there

exists points u, v in h(X) such that hxn → v = hu.

Let us prove hu = fu.

Given c � θ, we choose natural numbers k1, k2 such that

d(v, hxn) � c

3
∀n ≥ k1, d(hxn, hxn+1) �

c

3
∀n ≥ k2.

By the rectangular property,

d(hu, fu) ≤ d(hu, hxn) + d(hxn, hxn+1) + d(hxn+1, fu)

≤ d(v, hxn) + d(hxn, hxn+1) + d(gxn, fu)

≤ d(v, hxn) + d(hxn, hxn+1) + λd(hu, hxn)

≤ d(v, hxn) + d(hxn, hxn+1) + d(v, hxn)

� c

3
+

c

3
+

c

3
= c

for all n ≥ k where k = max{k1, k2}.
Since c is arbitrary,

d(hu, fu) � c

m
,∀m ∈ N

So, c
m − d(hu, fu) ∈ P ∀m ∈ N.Since c

m → θ as m →∞ and P is closed,−d(hu, fu) ∈
P . Hence d(hu, fu) ∈ P ∩ (−P ). Since P ∩ (−P ) = θ, d(hu, fu) = θ, hence hu = fu.

Similarly we can prove that hu = gu which implies that v is a point of coincidence of

h, f and g,

i.e. hu = gu = fu = v.
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To show that h, f and g have a unique point of coincidence, let us assume that there

exists another point v∗ in X such that hu∗ = gu∗ = fu∗ = v∗ for some u∗ in X. Now,

d(v, v∗) = d(fu, gu∗)

≤ λd(hu, hu∗)

≤ λd(v, v∗)

which implies that v = v∗.

Also if (f, h) and (g, h) are weakly compatible, then by Proposition 1.10, f, g and h

have a unique common fixed point. 2

Example 2.2 : Let E = R2,P = {(x, y) ∈ R, x, y ≥ 0} and X = {1, 2, 3, 4}
Define d : X ×X → E by:

d(x, x) = (0, 0)

d(1, 2) = d(2, 1) = (3, 9)

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = (1, 3)

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = (4, 12)

Then (X, d) is a cone rectangular metric space.

Define mappings f, g and h : X → X as follows:

f(x) = 3,∀x ∈ X

g(x) =

{
3 if x 6= 4;
1 if x = 4;

h(x) = x,∀x ∈ X

It is clear that f(X) ∪ g(X) ⊆ h(X). Also (f, h) and (g, h) are weakly compatible.

Conditions of Theorem 2.1 hold true and 3 is the unique common fixed point of f, g and

h. 2

Theorem 2.3 : Let (X, d) be a cone rectangular metric space and the mappings f, g, h :

X → X satisfy the condition

d(fx, gy) ≤ α[d(hx, fx) + d(hy, gy)] (4)

where α ∈ [0, 1/2).If f(X) ∪ g(X) ⊆ h(X) and h(X)is a complete subspace of X, then

f, h and g have a unique point of coincidence. Moreover, if (f, h) and (g, h) are weakly

compatible, then f, g and h have a unique common fixed point.
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Proof : Let x0 ∈ X. Like in previous Theorem, we define a sequence {hxn} in X as,

hxn+1 = fxn, hxn+2 = gxn+1, n = 0, 1, 2...

Assuming xn 6= xn+1 for n = 0, 1, 2..., we have

d(hxn, hxn+1) = d(fxn−1, gxn)

≤ α[d(hxn−1, fxn−1) + d(hxn, gxn)]

≤ α[d(hxn−1, hxn) + d(hxn, hxn+1)]

d(hxn, hxn+1) ≤
α

1− α
d(hxn, hxn−1)

≤ rd(hxn, hxn−1) where r =
α

1− α
∈ [0, 1)

...

≤ rnd(x0, x1)

Hence,

d(hxn, hxn+1) ≤ rnd(x0, x1) (5)

Also,

d(hxn, hxn+2) = d(fxn−1, gxn+1)

≤ α[d(hxn−1, fxn−1) + d(hxn+1, gxn+1]

≤ α[d(hxn−1, hxn) + d(hxn+1, hxn+2)]

≤ α[rn−1d(hx0, hx1) + rn+1d(hx0, hx1)]

≤ αrn−1(1 + r2)d(hx0, hx1)

i.e.

d(hxn, hxn+2) ≤ βrn−1d(hx0, hx1) (6)

where β = α(1 + r2) > 0.

For the sequence {hxn}, we consider d(hxn, hxn+p) in two cases, when p is odd and

when p is even.

If p is even say p = 2m, m ≥ 2 then using (5) and the rectangular inequality,

d(hxn, hxn+2m) ≤ d(hxn, hxn+2) + d(hxn+2, hxn+3) + ... + d(hxn+2m−1, hxn+2m)

≤ βrn−1d(hx0, hx1) + rn+2d(hx0, hx1) + ... + rn+2m−1d(hx0, hx1)

≤ βrn−1d(hx0, hx1) +
rn

1− r
d(hx0, hx1)
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If p is odd say p = 2m + 1, m ≥ 1 then using (5),(6) and the rectangular inequality,

d(hxn, hxn+2m+1) ≤ d(hxn, hxn+1) + d(hxn+1, hxn+2) + ... + d(hxn+2m, hxn+2m+1)

≤ rnd(hx0, hx1) + rn+1d(hx0, hx1) + ... + rn+2md(hx0, hx1)

≤ rn

1− r
d(hx0, hx1)

As 0 ≤ r < 1, βrn−1 → θ, rn

1−r → θ, by (a) and (d)of Remark 1.2, for every c ∈ E with

θ � c, there exits n0 ∈ N such that d(hxn, hxn+p) � c for all n > n0. Thus {hxn} is a

Cauchy sequence in X.

Since h(X) is a complete subspace of X,there exist points u, v ∈ h(X) such that hxn →
v = hu.

We will prove hu = fu. By the rectangular inequality, consider

d(hu, fu) ≤ d(hu, hxn) + d(hxn, hxn+1) + d(hxn+1, fu)

≤ d(v, hxn) + d(hxn, hxn+1) + d(gxn, fu)

≤ d(v, hxn) + d(hxn, hxn+1) + α[d(hu, fu) + d(hxn, gxn)]

≤ d(v, hxn) + d(hxn, hxn+1) + α[d(hu, fu) + d(hxn, hxn+1)]

d(hu, fu) ≤ 1
1− α

[d(v, hxn) + (1 + α)d(hxn, hxn+1)]

Given c � θ, we choose natural numbers k3, k4 such that

d(v, hxn) � c(1− α)
2

∀n ≥ k3 d(hxn, hxn+1) �
(1− α)
(1 + α)

c

2
∀n ≥ k4

Hence,

d(hu, fu) � c

2
+

c

2
= c

for all n ≥ k where k = max{k3, k4}.
Since c is arbitrary,

d(hu, fu) � c

m
,∀m ∈ N

So, c
m−d(hu, fu) ∈ P ∀m ∈ N. Since c

m → θ as m →∞ and P is closed,−d(hu, fu) ∈
P . Hence d(hu, fu) ∈ P ∩ (−P ).Therefore d(hu, fu) = θ,hence hu = fu.
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Similarly we can prove that hu = gu, i.e. v is the coincidence point of h, g and f.

To show that f, g and h have a unique point of coincidence, let us assume there exists

points u∗, v∗ ∈ X such that hu∗ = fu∗ = gu∗ = v∗.

Now,

d(v, v∗) = d(fu, gu∗)

≤ α[d(hu, fu) + d(hu∗, gu∗)]

≤ α[d(v, v) + d(v∗, v∗)]

which implies that v = v∗.

Also by Proposition 1.10,if (f, h) and (g, h) are weakly compatible,then f, g and h have

a unique common fixed point. 2
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