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Abstract

The objective of the present paper is to introduce the notion of φ-recurrent para-
Kenmotsu manifold and study its various geometric properties.

1. Introduction

On the analogy of almost-contact manifolds, in 1976 Sato [10] introduced the notion of

almost para-contact manifolds. An almost contact manifold is always odd-dimensional

but an almost para-contact manifold could be of even dimension as well. Takahashi [12],

defined almost contact manifolds (in particular, Sasakian manifolds) equipped with an

associated pseudo-Riemannian metric. In 1985, Kaneyuki et al. [5] defined the notion of

almost paracontact structure on pseudo-Riemannian manifold of dimension n(= 2m+1).
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Later Zamkovoy [15] showed that any almost paracontact structure admits a pseudo-

Riemannain metric with signature (n + 1, n). The notion of para-Kenmotsu manifold

was introduced by Welyczko [14]. This structure is an analogy of Kenmotsu manifold

[6] in para-contact geometry. Para-Kenmotsu (briefly p-Kenmotsu) and special para-

Kenmotsu (briefly sp-Kenmotsu) manifolds was studied by Sinha et al. [11], Blaga [1]

and Sai Prasad et al. [9], Prakasha et al. [8] and others.

During the last five decades the notion of locally symmetric manifolds have been weak-

ened by many authors in several ways to a different extent. As a weaker version of locally

symmetry, Takahashi [13] introduced the notion of locally φ-symmetry on a Sasakian

manifold. Recently, De et al. introduced and studied the notion of φ-recurrency on a

Sasakian manifold, which generalizes the notion of locally φ-symmetric Sasakian mani-

folds. De et al. [3] and Nagaraja [7] have studied this notion to Kenmotsu and trans-

Sasakian manifolds, respectively.

Ricci solitons, introduced by Hamilton [4] are natural generalizations of Einstein metrics,

and is defined on a Riemannian manifold (M, g). A Ricci soliton (g, V, λ) is defined on

(M, g) as

£V g(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0, (1.1)

where £V g denotes the Lie derivative of Riemannian metric g along a vector feild V ,

λ is a constant, and X, Y are arbitrary vector fields on M . A Ricci soliton is said

to be shrinking, steady and expanding according as λ is negative, zero, and positive

respectively. In this connection we can mention the work of Blaga [1] for η-Ricci solitons

on para-Kenmotsu manifolds.

The paper is organized as follows: Section 2 consist the basic definitions of para-

Kenmotsu manifolds. In section 3, we introduce and study the notion of φ-recurrent

para-Kenmotsu manifold and prove that a Ricci soliton admitting such a type of mani-

fold is an expanding. Also, we prove that a locally φ-recurrent para-Kenmotsu manifold

is of constant curvature -1. Finally, it is shown that, if a φ-recurrent para-Kenmotsu

manifold has a non-zero sectional curvature, then it reduces to a locally φ-symmetric

manifold in the sense of Takahashi.

2. Preliminaries

Let (Mn, g) be an n-dimensional smooth manifold with an almost paracontact metric
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structure (φ, ξ, η, g), that is, φ is an (1, 1)-tensor field, ξ is a vector field, η is a 1-form

and g is a pseudo-Riemannian metric such that

φ2(X) = X − η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0, (2.1)

g(φX, φY ) = −g(X, Y ) + η(X)η(Y ), (2.2)

g(X, ξ) = η(X), (2.3)

for all X, Y ∈ T (Mn).

If an almost paracontact metric manifold satisfies

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX. (2.4)

for any X, Y ∈ TMn, then (Mn, g) is called a almost para-Kenmotsu manifold. A nor-

mal almost para-Kenmotsu manifold is a para-Kenmotsu manifold. The para-Kenmotsu

structure for 3-dimensional normal almost paracontact metric structures was introduced

by Welyczko [14].

From the above equation it follows that

∇Xξ = X − η(X)ξ. (2.5)

Moreover, the curvature tensor R and the Ricci tensor S satisfy

R(X, Y )ξ = η(X)Y − η(Y )X, (2.6)

η(R(X, Y )Z) = g(X, Z)η(Y )− g(Y, Z)η(X), (2.7)

R(ξ,X)Y = η(X)Y − g(X, Y )ξ, (2.8)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (2.9)

S(X, ξ) = −(n− 1)η(X), (2.10)

for any vector fields X, Y, Z ∈ TMn.

3. φ-recurrent Para-Kenmotsu Manifolds

Analogous of consideration of φ-recurrent Sasakian manifold [2], we give the following

definition:
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Definition 3.1 : A para-Kenmotsu manifold is said to be a φ-recurrent manifold if

there exists a nowhere vanishing unique 1-form A such that

φ2((∇W R)(X, Y )Z) = A(W )R(X, Y )Z. (3.1)

for all vector fields X, Y, Z,W , where A is 1-form defined by A(X) = g(X, ρ) and ρ is a

vector field associated with 1-form A.

In particular, if the vector fields are horizontal, then the manifold turns to locally φ-

recurrent para-Kenmotsu manifold.

Especially, if the 1-form A in (3.1) vanishes and the vector fields are horizontal, then

the manifold reduces to a locally φ-symmetric para-Kenmotsu manifold.

By virtue of (2.1), the equation (3.1) becomes

(∇W R)(X, Y )Z − η((∇W R)(X, Y )Z)ξ = A(W )R(X, Y )Z, (3.2)

from which it follows that

g((∇W R)(X, Y )Z,U)− η((∇W R)(X, Y )Z)η(U) = A(W )g(R(X, Y )Z,U). (3.3)

Let {ei}, i = 1, 2, ....., n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting X = U = ei in (3.3) and taking summation over i, 1 ≤ i ≤ n,

we get

(∇W S)(Y, Z)−
n∑

i=1

η((∇W R)(ei, Y )Z)η(ei) = A(W )S(Y, Z), (3.4)

By putting Z = ξ in (3.2), the second term of L.H.S. reduces to the form

n∑
i=1

[
g((∇W R)(ei, Y )ξ, ξ)g(ei, ξ)

]
,

which is denoted by E. In this case E vanishes. Namely we have

−g((∇W R)(ei, Y )ξ, ξ) = −g(∇W R(ei, Y )ξ, ξ) + g(R(∇W ei, Y )ξ, ξ)

+g(R(ei,∇W Y )ξ, ξ) + g(R(ei, Y )∇W ξ, ξ),

at p ∈ M . Since {ei} is an orthonormal basis, ∇Xei = 0 at p. Using (2.1) and (2.7) we

obtain

g(R(ei,∇W Y )ξ, ξ) = g(ei, ξ)g(∇W Y, ξ)− g(∇W Y, ξ)g(ei, ξ) = 0.
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Thus we obtain

−g((∇W R)(ei, Y )ξ, ξ) = −g(∇W R(ei, Y )ξ, ξ) + g(R(ei, Y )∇W ξ, ξ).

In virtue of g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0, we have

g(∇W R(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0,

which implies

−g((∇W R)(ei, Y )ξ, ξ) = g(R(ei, Y )ξ,∇W ξ) + g(R(ei, Y )∇W ξ, ξ).

Using (2.4) and applying the skew-symmetry of R we get

−g((∇W R)(ei, Y )ξ, ξ) = g(R(ei, Y )ξ, φ2W ) + g(R(ei, Y )φ2W, ξ) = 0,

Hence, we reach

E =
n∑

i=1

[
g(R(φ2W, ξ)Y, ei)g(ξ, ei) + g(R(ξ, φ2W )Y, ei)g(ξ, ei)

]
= g(R(φ2W, ξ)Y, ξ) + g(R(ξ, φ2W )Y, ξ) = 0.

Replacing Z by ξ in (3.4) and using (2.9) we have

(∇W S)(Y, ξ) = −(n− 1)A(W )η(Y ). (3.5)

Now we have

(∇W S)(Y, ξ) = ∇W S(Y, ξ)− S(∇W Y, ξ)− S(Y,∇W ξ).

Using (2.4) and (2.9) in the above relation, it follows that

(∇W S)(Y, ξ) = (n− 1)g(W,Y )− S(Y, W ), (3.6)

In view of (3.5) and (3.6) we obtain

S(Y, φ2W ) = −(n− 1){A(W )η(Y ) + g(W,Y )− η(W )η(Y )}, (3.7)

Replacing Y by φY in (3.7) and then using (2.1) and (2.8) we obtain

S(Y, W ) = −(n− 1)g(Y, W ), (3.8)
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for all Y, W . This leads to the following:

Theorem 3.1 : A φ-recurrent para-Kenmotsu manifold (Mn, g), (n > 3) is an Einstein

manifold.

Let (Mn, g) be an n-dimension para-Kenmotsu manifold and let (g, V, λ) be a Ricci

soliton in (Mn, g). Let V be pointwise collinear with ξ, i.e V = ξ on Mn. Then the

relation (2.2) implies

(£ξg)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0,

or

2S(X, Y ) = −(£ξg)(X, Y )− 2λg(X, Y ). (3.9)

for any X,Y ∈ Γ(M).

On a para-Kenmotsu manifold (Mn, g), from Eq.(2.5) we obtain

(£ξg)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ),

= 2{g(X, Y )− η(X)η(Y )}.
(3.10)

By plugging Eq.(3.10) in Eq.(3.9), we have

S(X, Y ) = −(λ + 1)g(X, Y ) + η(X)η(Y ). (3.11)

Let a generalized φ-recurrent para-Kenmotsu manifold (Mn, g), n > 2, admits a Ricci

soliton (g, ξ, λ). Then by Eqs.(3.8) and (3.11) we get

(n− 2− λ)g(X, Y ) + η(X)η(Y ) = 0. (3.12)

Substitution of X = ξ, the above leads to the relation:

λ = n− 1. (3.13)

Therefore, λ is positive for n > 1. Hence, by the above discussion we are able to state:

Theorem 3.2 : A Ricci soliton (g, ξ, λ) in a generalized φ-recurrent para-Kenmotsu

manifold (Mn, g)(n > 2) is an expanding.

Now from (3.2) we have

(∇W R)(X, Y )Z = η((∇W R)(X, Y )Z)ξ + A(W )R(X, Y )Z, (3.14)
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From (3.14) and The Bianchi identity we have

A(W )η(R(X, Y )Z) + A(X)η(R(Y, W )Z) + A(Y )η(R(W,X)Z) = 0, (3.15)

By virtue of (2.6) we obtain from (3.15)

A(W )[η(Y )g(X, Z)− η(X)g(Y, Z)]

+A(X)[η(W )g(Y, Z)− η(Y )g(W,Z)]

+A(Y )[η(X)g(W,Z)− η(W )g(X, Z)] = 0.

(3.16)

Putting Y = Z = ei in (3.16) and taking summation over i, 1 ≤ i ≤ 2n + 1, we obtain

η(W )A(X) = η(X)A(W ), (3.17)

for any vector field X and W . Replacing X by ξ in (3.17), it follows that

A(W ) = η(ρ)η(W ), (3.18)

for any vector field X. Where A(ξ) = g(ξ, ρ) = η(ρ), ρ being the vector field associated

to the 1-form A.

From (3.17) and (3.18) we can state the following:

Theorem 3.3 : In a φ-recurrent para-Kenmotsu manifold (Mn, g), (n > 3), the charac-

teristic vector field ξ and the vector field ρ associated to the 1-form A are co-directional

and the 1-form A is given by (3.18).

Next, in view of (2.4) and (2.5) it can be easily seen that in a para-Kenmotsu manifold

the following relation holds:

(∇W R)(X, Y )ξ = g(X, W )Y − g(Y, W )X −R(X, Y )W, (3.19)

By virtue of (2.6), it follows from (3.19) that

η((∇W R)(X, Y )ξ) = 0. (3.20)

In view of (3.19) and (3.20), we obtain from (3.2) that

(∇W R)(X, Y )ξ = A(W )R(X, Y )ξ, (3.21)

from which it follows that

g(X, W )Y − g(Y, W )X −R(X, Y )W = η(ρ)η(W )[η(X)Y − η(Y )X]. (3.22)
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If X and Y are horizontal vector fields, then we obtain

g(X, W )Y − g(Y, W )X = R(X, Y )W. (3.23)

Hence we have the following:

Theorem 3.4 : A locally φ-recurrent para-Kenmotsu manifold (Mn, g), (n > 3), is a

manifold of constant curvature -1.

Now, we suppose that a para-Kenmotsu manifold (Mn, g), (n > 3), is a φ-recurrent.

Then from (3.14) and (3.19), it follows that

(∇W R)(X, Y )Z = {g(X, W )g(Y, Z)− g(Y, W )g(X, Z)

− g(R(X, Y )W,Z)}ξ + A(W )R(X, Y )Z
(3.24)

From above it follows that

φ2((∇W R)(X, Y )Z) = A(W )R(X, Y )Z−A(W ){g(X, Z)η(Y )− g(Y, Z)η(X)}ξ, (3.25)

which yields

φ2((∇W R)(X, Y )Z = A(W )R(X, Y )Z,

provided that the vector fields X and Y are horizontal. Which states the following

Theorem 3.5 : A para-Kenmotsu manifold (Mn, g), (n > 3), satisfying the relation

(3.24) is locally φ-recurrent.

Next we suppose that in a φ-recurrent para-Kenmotsu manifold, the sectional curvature

of a plane π ∈ TP M defined by

KP (π) = g(R(X, Y )Y, X)

is a non-zero constant k, where {X, Y } is any orthonormal basis of π. Then we have

g((∇W R)(X, Y )Y, X) = 0, (3.26)

By virtue of (3.26) and (3.2) we obtain

−g((∇W R)(X, Y )Y, ξ)η(X) = A(W )g(R(X, Y )Y, X), (3.27)

Since in a φ-recurrent para-Kenmotsu manifold, the relation (3.24) holds good, using

(3.24) in (3.27) we get

−η(X){g(X, W )g(Y, Y )− g(Y, W )g(Y, X)− g(R(X, Y )W,Y )}

+A(W ){η(Y )g(X, Y )− η(X)g(Y, Y )} = kA(W ).
(3.28)
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Putting W = ξ in (3.28) we get,

η(ρ){k − η(Y )g(X, Y ) + η(X)g(Y, Y )} = 0,

which implies that,

η(ρ) = 0.

Hence by (3.18) we obtain from (3.1) that

φ2((∇W R)(X, Y )Z = 0.

This leads to the following:

Theorem 3.6 : If a φ-recurrent para-Kenmotsu manifold (Mn, g), (n > 3), has a non-

zero constant sectional curvature, then it reduces to a locally φ-symmetric manifold in

the sense of Takahashi.
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