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Abstract

An analysis of steady flow of a viscous, incompressible electrically conducting fluid
past a stretching semi-infinite non-conducting vertical plate with heat transfer has
been discussed in presence of magnetic field. The basic governing equation for
conservation of mass, momentum and the energy equation are reduced to a set
non-linear coupled ordinary differential equation. The resulting set of similarity
equation has been solved numerically by employing Runge-Kutta algorithm with
Newton iteration in double precision with a systematic guessing the missing initial
conditions using the shooting technique. The effects of Prandtl number, Grashoff
number and the magnetic parameter on velocity, temperature have been discussed
numerically. Further more, the effects of these existing physical parameters are
discussed on skin-friction co-efficient and heat transfer co-efficient on the stretching
heated vertical sheet.

1. Introduction

The free convection finds technical application in many areas such as containing ma-

chinery, atmosphere and oceanic circulation, power transformation etc.. The problem
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of free convection flow and heat transfer problems of stretching sheet has attracted many

investigators due to its wide range of practical application, i.e. in cooling of nuclear

reactor, chemical engineering and aeronautics. Free convection flow is developed in a

fluid when temperature causes density variations leading to buoyancy force acting on

the fluid element. The free convection flow problems over infinite vertical disk with

buoyancy forces has been studied by several investigators. One may refer the works of

Kumari, Takhar and Nath (1993), Yan and Soon(1997), Kumar et.al(1995).

The heat transfer over a stretching surface is of interest in polymer extrusion processes

where the object after passing through a die enters the fluid for cooling below a certain

temperature. The rate of which such objects are cooled has are important bearingon the

properties of final product. In the process of cooling the fluid, the momentum boundary

layer for linear stretching of sheet was first studied by Crane (1970). A study on heat and

mass transfer over a stretching surface with suction or blowing was carried out by Gupta

and Gupta(1977). The same type of problem with inclusion of constant surface velocity

and power- law temperature variations were studied by Soundalgekar and Ramamurthy

(1980), Grubba and Bobba(1982) studied the power-law temperature variations in the

case of a stretching continuous surface. Chen and Char (1998) investigated the effect of

power-law temperature and power-law heat flux in the heat transfer characteristics of a

continuous linear stretching surface. The problem of a stretching surface with constant

surface temperature was analysed by Noor Afzal(1993).

Atul kumar singh( 2001) analysed the MHD free convection and mass transfer flow with

heat source and thermal diffusion. Moreover, an investigation was made on unsteady

free convective MHD flow and heat transfer past a vertical porous plate with variable

temperature by Sarangi and Jose( 2005) Kandasamy et. al (2005) investigated heat

and mass transfer on MHD flow over a vertical stretching surface with heat source and

thermal stratification effects. The present study deals with the details investigation on

MHD flow past a stretching heated vertical plate of a Newtonian conducting fluid in

presence of free convection.

2. Formulation of the Problem

A steady two-dimensional nom-linear flow of an incompressible, viscous, electrically

conducting and Boussinesq fluid flowing over a vertical heated stretching sheet in the
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presence of an uniform magnetic field has been considered in the region y > 0. According

to the co-ordinate system, the x-axis is chosen parallel to the vertical heated sheet and

y- axis is taken normal to it. Keeping the origin fixed, two equal and opposite forces are

applied along the x-axis which results in stretching of the sheet. A transverse magnetic

field of strength B0 is applied parallel to the y-axis. The fluid properties are assumed

to be constant in a limited temperature range. It is assumed that the induced magnetic

field, the external electric field and the electric field due to the polarization of charges

are negligible.

Furthermore, it is assumed that the temperature of the stretching sheet is Tw where

Tw > T∞ where T∞ is the temperature of the fluid far from the sheet and T is the tem-

perature of the fluid. Under these conditions, the governing boundary layer equations

of continuity, momentum and energy neglecting viscous and Joules dissipation under

Boussinesq’s approximation are
∂u

∂x
+
∂v

∂y
= 0. (1)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3)

subjects to the boundary conditions

u = ax, v = 0, T = Tw(x) at y = 0

u = 0 T = T∞ as y →∞

 (4)

As in Kandasamy et. al (2005), the following change of variables are introduced

ψ(x, y) = x
√
νaF (η), η(x, y) =

√
a
ν y

Tw(x) = T∞ + Cxθ(η), θ(η) = T−T∞
Tw−T∞

.

 (5)

The velocity components are given by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (6)

The equation of continuity (1) is identically satisfied which can be easily verified.

Similarity solution exists if we assume that U(x) = ax and introduce the above non-

dimensional change of variable i.e. using (5) and (6) in (2) and (3) give the non-linear
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coupled ordinary differential equationas

F ′′′ + FF ′′ − F ′2 −MF ′ +Grθ = 0 (7)

θ′′ + PrFθ
′ = 0, (8)

subject to the boundary conditions

F (0) = 0, F ′(0) = 1, θ(0) = 0

F ′(∞) = 0, θ(∞) = 0,

 (9)

where prime denotes differentiation with respect to η,M = σB2
0

ρa is the hydro-magnetic

parameter Gr = gβC
a2 is the buoyancy parameter i.e. Grashoff number and Pr = ν

al is the

prandtl number of the conducting fluid.

3. Numerical Solution

A direct numerical solution of the above non-linear coupled ordinary differential equa-

tions (7) and (8) subject to the boundary condition (9) cannot be obtained because to

integrate a pair of fifth order non-linear ordinary differential equation by the standard

numerical methods, five conditions must be prescribed at the initial point of integration.

But here two (2) conditions are missing at the initial point of integration. The shooting

method is a suitable one which can convert a boundary value problem to an initial

value problem. For numerical computation we take the infinity boundary condition at a

large but finite value of η where considerable variation of velocity and temperature field

do not occur. The set of equations (7) and (8), thus obtained are solved numerically.

Regarding missing boundary conditions we apply shooting technique. In this numerical

technique the missing boundary conditions at the initial point are being guessed first

suitably. The value of the dependent variable is then calculated at the terminal point

by adopting fourth order Runge-Kutta method. The value of the dependent variable

may over shoot or undershoot the given value at the terminal point. The process is

then repeated in each case changing the value for the missing boundary condition at the

initial point of integration until the calculated value of the dependent variables match

with given value at the terminal point within a admissible tolerance viz. 0.0000001

algorithm of the procedure are given in Niyogi(2003). The variations of the velocity

and temperature fields are found for different values of existing parameter and their
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behavior are discussed in the next section.

4. Results and Discussion

In order to get a clear insight of this physical problem, numerical results are displayed

with the help of tables investigation. So a representative tabulated results are presented

in the tables 1 to 12. The numerical values of the velocity, temperature, skin friction

coefficients and heat transfer coefficients are computed for different existing flow param-

eters viz. magnetic parameter (M), Grashoff number (Gr) and prandtl number (Pr),

and the results are presented in the tables 1 to 12 to show the inhibiting influence of

various parameters on velocity profile, temperature distribution, skinfriction co-efficient

and heat transfer co-efficient. Table-1 presents the velocity profile F ′ vs η for several

magnetic parameter M . It is clear from the table-1 that the velocity F ′ of the con-

ducting fluid decreases with the increase of magnetic parameter M . In the table-2, the

values of F ′ vs η across the boundary layer have been presented for various Grashoff

Number Gr with constant or uniform magnetic field. I.e. M = 2 and Pr = 0.71. It

is observed from table-2 that the effect of buoyancy parameter Gr are to increase the

velocity of the conducting fluid across the boundary layer. Table-3 and 4 list values

of F ′ vs η and θ vs η respectively for several prandtl number with constant/ uniform

magnetic field M and constant buoyancy parameter Gr. It is clear that the thickness of

thermal boundary layer and thickness of thermal boundary layer both decrease sharply

with the increase in Prandtl number Pr. Table -5 shows the buoyancy effect for different

values of buoyancy parameter i.e. Grashoff number, which says that the dimensionless

temperature of the conducting fluid increases with the with the increase in the value

of Grashoff number Gr with uniform magnetic field and Pr = 0.71. The effects of the

magnetic parameter on the temperature of the fluid θ vs η are shown in the table-6 with

constant buoyancy parameter Gr = 5 and Pr = 0.71. It is noticed that the temperature

of the conducting fluid increases with the increase in the value of magnetic parameter

across the boundary layer. The value of skin-friction co-efficient F ′′(0) on the stretch-

ing vertical sheet are presented in the tables 7, 8 and 9 for various magnetic parameter,

buoyancy parameter (Grashoff number)and prandtl number respectively. It is inferred

from table 7 and 9 that skin-friction co-efficient decreases with the increase of magnetic

parameter (M) and buoyancy parameter (Gr) respectively. Again from table-8 it is
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observed that skin-friction co-efficient increases due to increase in the value of Grashoff

number. The values of heat transfers co-efficient −θ′(0) on the stretching vertical sheet

are presented in the tables 10, 11 and 12 for various prandtl number, buoyancy param-

eter (Grashoff number)and magnetic parameter respectively. It is noticed from table-10

that the heat transfer co-efficient −θ′(0) increases with the increase of Prandtl number

Pr. It is observed from table 11 and 12 that the heat transfer co-efficient decreases due

to increase in the buoyancy parameter (Gr) and magnetic parameter M respectively.

Table 1 : Dimensionless velocity distribution F ′ vs η for various values of magnetic

parameter M when Pr = 0.71 and Gr = 5

η M = 0 M = 1 M = 3 M = 5 M = 10
0.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.000000 1.010401 0.980423 0.929117 0.886500 0.804161
0.200000 0.984720 0.934300 0.849617 0.781107 0.654508
0.300000 0.928103 0.866021 0.763420 0.682322 0.538345
0.400000 0.845592 0.779663 0.672251 0.589115 0.446962
0.500000 0.742013 0.678981 0.577632 0.500783 0.374503
0.600000 0.621998 0.567420 0.480909 0.416879 0.317241
0.700000 0.489946 0.448141 0.383272 0.337156 0.273084
0.800000 0.350026 0.324049 0.285784 0.261525 0.241264
0.900000 0.206175 0.197827 0.189403 0.170029 0.163217
1.000000 0.005643 0.002438 0.0006893 0.0002185 0.000763

Table 2 : Dimensionless velocity distribution F ′ vs η for various values of Gr when

Pr = 0.71 and M = 2

η Gr = 1 Gr = 2 Gr = 5 Gr = 7 Gr = 10 Gr = 15
0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.100000 0.851925 0.877510 0.953489 1.003592 1.077898 1.199862
0.200000 0.720951 0.763488 0.889568 0.972536 1.095316 1.296240
0.300000 0.604099 0.656504 0.811533 0.913330 1.063641 1.308862
0.400000 0.498882 0.555414 0.722348 0.831750 0.992959 1.255239
0.500000 0.403222 0.459299 0.624659 0.732870 0.892082 1.150603
0.600000 0.315378 0.367429 0.520817 0.621139 0.768654 1.008041
0.700000 0.233894 0.279229 0.412925 0.500453 0.629286 0.838707
0.800000 0.157547 0.194255 0.302868 0.374236 0.479693 0.652046
0.900000 0.085302 0.112168 0.192347 0.245513 0.324824 0.456047
1.000000 0.016287 0.032718 0.082919 0.116979 0.168994 0.257479
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Table 3 : Dimensionless velocity distribution F ′ vs η for various values of Pr when

M = 2 and Gr = 5

η Pr = 0.00741 Pr = 0.71 Pr = 1 Pr = 2 Pr = 7
0.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.100000 0.959943 0.955017 0.953879 0.953541 0.952728 0.952663
0.200000 0.902581 0.892647 0.890352 0.889669 0.888029 0.887901
0.300000 0.831186 0.816180 0.812709 0.811676 0.809194 0.809008
0.400000 0.748273 0.728483 0.723891 0.722523 0.719238 0.719004
0.500000 0.655467 0.631962 0.626483 0.624851 0.620928 0.620663
0.600000 0.553497 0.528564 0.522740 0.521008 0.516848 0.516577
0.700000 0.442288 0.419798 0.414621 0.413091 0.409444 0.409208
0.800000 0.321107 0.306768 0.303815 0.302982 0.301081 0.300936
0.900000 0.194107 0.194082 0.192378 0.191783 0.190215 0.188735
1.000000 0.097672 0.91069 0.82830 0.79789 0.070568 0.433617

Table 4 : Dimensionless temperature distribution θ vs η for various values of Pr when

M = 2 and Gr = 5

η Pr = 0.00741 Pr = 0.− 025 Pr = 0.71 Pr = 1 Pr = 2 Pr = 7
0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.100000 0.899927 0.899763 0.892870 0.889806 0.879295 0.822091
0.200000 0.799860 0.799547 0.786391 0.780556 0.760646 0.654556
0.300000 0.699981 0.699373 0.681172 0.673125 0.645909 0.505622
0.400000 0.5997699 0.599257 0.577686 0.568187 0.536428 0.379372
0.500000 0.499753 0.499210 0.476263 0.466200 0.433001 0.276202
0.600000 0.399760 0.399238 0.377079 0.367396 0.335915 0.193990
0.700000 0.299792 0.299343 0.280159 0.271795 0.245010 0.129343
0.800000 0.199846 0.199519 0.185383 0.179214 0.159757 0.078568
0.900000 0.099921 0.0.099757 0.092487 0.089284 0.079330 0.038238
1.000000 0.005436 0.002665 0.001461 0.001066 0.000540 0.000012

Table 5 : Dimensionless temperature distribution θ vs η for various values of Gr when

M = 2 and Pr = .71

η Gr = 1 Gr = 2 Gr = 5 Gr = 7 Gr = 10 Gr = 15
0.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.100000 0.8911415 0.891576 0.892881 0.893706 0.895088 0.897335
0.200000 0.782902 0.783762 0.786362 0.788008 0.790762 0.795242
0.300000 0.675926 0.677206 0.681073 0.683523 0.687618 0.694283
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η Gr = 1 Gr = 2 Gr = 5 Gr = 7 Gr = 10 Gr = 15
0.400000 0.570784 0.572455 0.577512 0.580719 0.586073 0.594797
0.500000 0.467953 0.469960 0.476034 0.479897 0.486332 0.496843
0.600000 0.367838 0.370073 0.376847 0.381171 0.388359 0.400147
0.700000 0.270772 0.273060 0.280007 0.284467 0.291864 0.304067
0.800000 0.177033 0.179108 0.185428 0.189516 0.196283 0.207542
0.900000 0.086864 0.088332 0.092881 0.0955857 0.100757 0.109012
1.000000 0.000393 0.000789 0.002001 0.002826 0.004096 0.006287

Table 6 : Dimensionless temperature distribution θ vs η for various values of

magnetic parameter M when Gr = 5 and Pr = 0.71.

η M = 0 M = 1 M = 2 M = 5 M = 7 M = 10 M = 15
0.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.100000 0.906147 0.906516 0.906902 0.908174 0.909125 0.910725 0.913928
0.200000 0.811766 0.812505 0.813280 0.815829 0.817734 0.820940 0.827362
0.300000 0.716296 0.717484 0.718564 0.722388 0.725248 0.730062 0.739714
0.400000 0.619277 0.620738 0.622278 0.627325 0.631113 0.637500 0.650335
0.500000 0.520374 0.522143 0.524001 0.530152 0.534779 0.542608 0.558422
0.600000 0.419401 0.421380 0.423465 0.430410 0.435669 0.444625 0.462889
0.700000 0.316351 0.318366 0.3220499 0.327669 0.333157 0.342599 0.362163
0.800000 0.211424 0.213197 0.215086 0.221522 0.226526 0.235272 0.253843
0.900000 0.105052 0.106176 0.107386 0.111586 0.114927 0.120902 0.134072
1.000000 0.002092 0.002167 0.002245 0.002503 0.002696 0.003025 0.003703

Table 7 : Values of skin-friction co-efficient F ′′(0) for various values of magnetic

parameter M when Gr = 5 and Pr = 0.71

M 1 3 5 7 10 15
F ′′(0) 1.422821 0.993452 0.248986 −0.37798 −.917684 −2.54826

Table 8 : Values of skin-friction co-efficient F ′′(0) for various values of buoyancy

parameter Gr when M = 2 and Pr = 0.71

Gr 1 2 5 10 15 20
F ′′(0) −1.349314 −0.850374 0.604168 2.90967 5.095994 7.186621
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Table 9 : Values of skin-friction co-efficient F ′′(0) for various values of prandtl

number Pr when M = 2 and Gr = 5

F ′′(0) 0.619683 0.619276 0.604168 0.598175 0.579116 0.509960

Table 10 : Values of heat transfer co-efficient −θ′(0) for various values of prandtl

number Pr when M = 2 and Gr = 5

Pr 0.00741 0.025 0.71 1 2 7
−θ′(0) 1.000732 1.002472 1.071492 1.101428 1.207650 1.782764

Table 11 : Values of heat transfer co-efficient −θ′(0) for various values of Grashoff

number Gr when M = 2 and Pr = 0.71

Gr 1 2 5 10 15 20
−θ′(0) 1.08885 1.08454 1.084430 1.049416 1.026939 1.00407

Table 12 : Values of heat transfer co-efficient −θ′(0) for various values of magnetic

parameter M Gr = 5 and Pr = 0.71

M 0 1 3 5 7 10
−θ′(0) −1.063705 1.067517 1.075633 1.084430 1.093936 1.109578
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