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Abstract

In this paper we discuss and prove the Riesz-Thorin interpolation theorem in the
space of tempered distributions.

1. Introduction

In this paper, we present one classical result of interpolation operator; The Riesz-Thorin

Interpolation Theorem in L2(Rn). The theorem allows us to show that a linear operator

that is bounded on two spaces is bounded on every space in between the two. The proof
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of the Riesz-Thorin Interpolation Theorem is based on the Hadamard’s Three-Lines

lemma.

Lemma 1.1 (The three lines lemma) : Suppose F (z) is a bounded continuous

function in the strip Rez ∈ [0, 1] which is holomorphic for Rez ∈ (0, 1). If |F (z)| ≤≤ N0

for Rez = 0 and |F (z)| ≤ N1 for Rez = 1, then |F (z) ≤ N1−x
0 Nx

1 for Rez = x; 0 < x < 1.

Proof : We follow the proof due to ([1],[2]).

Let Gε(z) = G(z)N z−1
0 N−z

1 eεz(z−1). For Rez = 0, we have

|Gε(iy)| = |G(iy)N iy−1
0 N−iy

1 eεiy(iy−1)|

≤ |N0N
iy−1
0 N

εiy(iy−1)
1 |; since F (z) ≤ N0 for Rez = 0

≤ |eiy ln N0e−iy ln N1eεiy(iy−1)|

= |eiy ln(N0/N1)e−εy2
e−εiy|.

Now since |eiy ln(N0/N1)| ≤ 1; |eεiy| ≤ 1 (both are on the unit circle), |Gε(iy)| ≤ eεy2 | ≤ 1.

For Rez = 1, we have

|Gε(1 + iy)| = |G(1 + iy)N iy
0 N

−(1+iy)
1 eεiy(1+iy)|

≤ |eln(N0/N1)eiεe−εy2 |

≤ eεy2 ≤ 1.

When 0 < Rez < 1 i.e 0 < x < 1,

|Gε(x + iy)| = |G(x + iy)Nx+iy−1
0 N

−(x+iy)
1 eε(x+iy)(iy−1)|

≤ |G(x + iy)||Nx−1
0 N−x

1 eεx(x−1)|e−εy2

≤ Ce−εy2

since F (z) is bounded on the strip. Now since holomorphic functions attain their maxi-

mum and minimum on the boundary of any compact set; consider the compact domain

K = {z|Imz| ≤ k; 0 ≤ Rez ≤ 1} where k is so large that |Gε(x + iy)| ≤ 1 for all |y| ≥ k

and 0 ≤ x ≤ 1. Thus we see that e−εy2 → 0 as y → ∞and hence |Gε(x + iy)| → 0 as

Imz → 0. Hence from above, we have

lim
ε→0

|Gε(x + iy)| ≤ |G(x + iy)|Nx−1
0 N−x

1 ≤ 1

for Rez. Therefore, |G(x + iy) ≤ N1−x
0 Nx

1 . We also need the following lemma as well.
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Lemma 1.2 (Lyapnov Inequality) : Let 1 ≤ p0, p1 ≤ ∞ and 0 ≤ σ ≤ 1. Define p by

1
p

=
1− σ

p0
+

σ

p1

Then Lp0 ∩ Lp1 ⊂ Lp and we have

|f ||p||f ||1−σ
p0

||f ||σp1
;∀f ∈ Lp0 ∩ Lp1 (1)

Proof : We use Holder’s inequality to prove inequality (). We have ||fg||1 ≤ ||f ||p||f ||q
whenever 1/p + 1/q = 1. We let x = (1σ)p; y = σp; 1/z0 = x/p0; 1/z1 = y/p1, then

x + y = p; 1/z0 + 1/z1 = 1; xz0 = p0 and yz1 = p1. Hence using Holder’s inequality, we

get

||f ||pp = (
∫
|f |pdx)

1
p = ||fp||1 = ||fx+y||1

= ||fxfy|| ≤ ||fx||z0 ||fy||z1

= (
∫
|f |xz0dx)

1
z0 (

∫
|f |yz1dx)

1
z1

= (
∫
|f |p0dx)

1−σ
p0

p(
∫
|f |p1dx)

σ
p1

p

= (||f ||1−σ
p0

||f ||σp .

Thus

||f ||p ≤ ||f ||1−σ
p0

||f ||σp1

Theorem 1.3 (Riesz-Thorin Interpolation theorem) : Let 1 ≤ p0, p1, q0, q1 ≤ ∞
and z ∈ (0, 1). Define 1 ≤ p, q ≤ ∞ by

1
p

=
1− z

p0
+

z

p1
;
1
q

=
1− z

q0
+

z

q1
; z ⊂ C.

If T is a linear map with

T : Lp0 → Lq0 , ||T ||Lp0 → Lq0 = N0

T : Lp1 → Lq1 , ||T ||Lp1 → Lq1 = N1.

Then we have ||Tf ||q ≤ N1−z
0 N z

1 ||f ||p for all f ∈ Lp0 ∩ Lp1 . Hence T extends uniquely

as a continuous map from Lp to Lq, with ||T ||Lp → Lq ≤ N1−z
0 N z

1 . More precisely if

||Tf ||q0 ≤ N0||f ||p and ||Tf ||q ≤ N1||f ||q then ||Tf ||q ≤ N1−z
0 N z

1 ||f ||p.
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Proof : We are going to use the L2 theory of derivatives to carry out the proof, for one,

L2 is a Hilbert space; secondly, the Fourier transform, which converts differentiation into

multiplication by polynomials, is a unitary isomorphism on L2. The resulting function

spaces are known as (L2)Sobolev spaces. Also we note that since Fourier transform maps

tempered distributions into tempered distributions, we define the Sobolev norm of order

s by

||f ||2s ≡
∫
|f̂(ξ)|2(1 + |ξ|2)sdξ < ∞

. Now given φ, ϕ ⊂ δ, δ− Schwartz class, we let

F (z) =
〈
T (1 + |ξ|2)−

s
2 φ, (1 + |ξ|2)

t
2 ϕ

〉
=

∫
(Tφ)(1 + |ξ|2)−

s
2 (1 + |ξ|2)

t
2 ϕdξ

s(z) =
1
p
, s0 =

1
p0

, t(z) =
1
q
, t0 =

1
q0

.

For z = x + iy we have(∫
(1 + |ξ|2)z|φ|2dξ

) 1
2

=
(∫

(1 + |ξ|2)x|φ|2dξ

) 1
2

= ||φ||s−x

Since

|(1 + |ξ|2)z| = |ez ln(1+|ξ|2)| = |(1 + |ξ|2)xeiy ln(1+|ξ|2) ≤ |(1 + |ξ|2)x

for |eiy ln(1+|ξ|2)| < 1. Since (1 + |ξ|2)z is an entire holomorphic function of z; it follows

easily that F (z) is an entire holomorphic function of z. For Rez = 0,

|F (z)| ≤
(∫

|Tφ|2(1 + |ξ|2)−s0dξ

) 1
2
(∫

|ϕ|2(1 + |ξ|2)t0dξ

) 1
2

≤ ||T (1 + |ξ|2)−s0φ||t0 ||(1 + |ξ|2)t0ϕ||−t0

≤ N0||(1 + |ξ|2)−s0φ||s0 ||(1 + |ξ|2)t0ϕ||t0
≤ N0||φ||0||ϕ||0.

Similarly for Rez = 1

|F (z)| ≤
(∫

|Tφ|2(1 + |ξ|2)−s1dξ

) 1
2
(∫

|ϕ|2(1 + |ξ|2)t1dξ

) 1
2

≤ ||T (1 + |ξ|2)−s1φ||t1 ||(1 + |ξ|2)t1ϕ||−t1

≤ N1||(1 + |ξ|2)−s1φ||s1 ||(1 + |ξ|2)t1ϕ||t1
≤ N1||φ||0||ϕ||0.
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For Rez = x, 0 ≤ x ≤ 1

|F (z)| ≤
(∫

|Tφ|2(1 + |ξ|2)−s(z)dξ

) 1
2
(∫

|ϕ|2(1 + |ξ|2)t(z)dξ

) 1
2

≤
(∫

|Tφ|2(1 + |ξ|2)−(1−x−iy)s0−(x−iy)s1dξ

) 1
2
(∫

|ϕ|2)(1−x−ty)t0+(x−iy)t1dξ

) 1
2

≤ ||T (1 + |ξ|2)−(1−x)s0−xs1φ||t0 ||(1 + |ξ|2)(1−x)t0+xt1ϕ||−t0

≤ N1||(1 + |ξ|2)−s1φ||s1 ||(1 + |ξ|2)t1ϕ||t1
N0||(1 + |ξ|2)−(1−x)s0−xs1φ||s0 ||(1 + |ξ|2)(1−x)t0+xt1ϕ||t0

≤ N0||φ||x(s0−s1)||ϕ||x(t1−t0).

Thus by the three lines lemma,

|F (z)| ≤ N1−x
0 Nx

1 ||φ||0||ϕ||0, 0 ≤ x ≤ 1

Now

F (z) = 〈T (1 + |ξ|2)−
s
2 φ, (1 + |ξ|2)

t
2 ϕ〉

=
∫

(Tφ)(1 + |ξ|2)−
s
2 (1 + |ξ|2)

t
2 ϕdξ

= 〈(1 + |ξ|2)
t
2 T (1 + |ξ|2)−

s
2 φ, ϕ〉

and δ is dense in L2 = H = H0. SinceH0 is its own dual, it means that (1+ |ξ|2)
t
2 T (1+

|ξ|2)−
s
2 is bounded on H0 and hence T is bounded from Hs(x) to Ht(x):

||Tf ||t(x) =
(∫

(1 + |ξ|2)tT (1 + |ξ|2)−s(1 + |ξ|2)sfdξ

) 1
2

= ||(1 + |ξ|2)tT (1 + |ξ|2)−s(1 + |ξ|2)sf ||0

≤ N1−x
0 Nx

1 ||(1 + |ξ|2)sf ||0 = N1−x
0 Nx

1 ||f ||s(x)

2. Conclusion

We note that in the space of tempered distribution, we cannot define the convolution of

Fourier transform. Hence the application of Riesz-Thorin in the space of tempered dis-

tributions fails in the proof of convolution theorem, and Young’s Inequality theorem for

we note that convolution theorem is only defined in L1 [3]. Proof of Young’s Inequality
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fails because it uses convolution theorem.
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